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1. Introduction 
 
 Requirements on software systems in all domains, from the smallest embedded systems, 
desktop and business software to large scale industrial systems are increasing constantly. 
Software development is thus faced with responding to huge challenges. Systems are 
expected to be more reliable, less resource hungry and brought to market as soon as possible. 
An approach to software system development based on the reusability principle and has an 
increasing popularity is component-based development (CBD), where systems are built by 
composing independent, tested and trusted software components. Component-based software 
engineering (CBSE) is a structured and a systematic approach to CBD whose purpose is to 
provide processes and technologies for successful mainstream application of CBD, which is 
expected in the future.  
 
Considering that the component is the fundamental building block of software systems in 
CBD, it is important to investigate methods for implementing its functionality, i.e. the 
services it provides. Services provided by components are mostly algorithmic, i.e. they realize 
specific calculations on relatively simple sets of input data. Thus implementation is given as 
source code in a fast programming language, such as C. However, when implementing the 
functionality in a concrete programming language, the implementations correctness becomes 
harder to verify, and can mostly be achieved through testing. Component also becomes 
dependent on a specific programming language.  
 
An approach that offers some solutions to these and other problems is behavior modeling. 
Modeling has today become a mainstream engineering technique, especially with the 
emergence of the Unified Modeling Language (UML). Although many arguments exist pro 
and contrary of the modeling approach, it is nevertheless reasonable to investigate 
possibilities of applying existing methods for modeling the behavior of software components. 
The situation in the field of behavior modeling languages is far from ideal. There is no clear 
definition of what a behavior modeling language is, nor do there seem to be any systematic 
attempts to generally structure the field of such languages.  
 
The purpose of this thesis is to attempt to analyze and summarize behavior modeling 
languages and in particular two languages that have shown most promising, Executable UML 
(xUML) and Construction and composition language (CCL). Considering the situation in the 
field of such languages, a short summary of several discovered languages is given, but the 
majority of attention was given to xUML and CCL since CCL has proven to be successful in 
its domain and xUML represents an important family of modeling languages based on the 
ubiquitous UML. The secondary task was to provide a model for applying such behavior 
modeling languages for modeling the behavior of the ProCom component model, which has 
been developed as part of the PROGRESS project and aims at enabling component-based 
development of resource limited and control intensive embedded systems. 
 
An overview of the CBSE concepts and the development process is given in chapter 2. 
Chapter 3 gives an overview of the ProCom model. CCL is analyzed in detail in chapter 4 and 
strategies for its application to ProCom are given in chapter 5. Development processes using 
xUML are covered in chapter 6 and the application of xUML to ProCom is the subject of 
chapter 7. Chapter 8 contains a short language summary of a few other discovered modeling 
languages. Conclusion in chapter 9 gives a final closure to the thesis. 



4 

2. Overview of CBSE 
 
 Software development today is experiencing a massive expansion into virtually all areas 
of human life, from industrial and business to home applications. Practically any new feature 
that a technical product will offer is mostly based on its software. Therefore requirements on 
software systems and thus on the development process have become very high. Requirements 
are high both from the viewpoint of shortening the development time, minimizing the cost of 
development, etc. Specialized systems also have special requirements, for example software 
for embedded systems has special requirements on minimizing the required resources etc.  
 
Thus the production of software is more complex then ever before and software is becoming 
more ubiquitous. Software industries ability to build larger and more complex systems has 
improved considerably. Important public infrastructure relies on complex computer system. 
An incredible amount of different technologies exist for building software systems. However, 
when observing fundamental software development processes not much has changed. 
Waterfall model is still the dominant approach for development of systems, testing is still the 
dominant validation approach, etc.  [14] 
 
Therefore considerable problems still exist, which cause the majority of projects to fail to 
meet their deadline, budget and quality requirements. 
 
One possible solution for problems of software development today is the reuse principle. 
Reusability is not a new idea but in spite of that it has not become the main development 
method. Component based development (CBD) is a developing new approach that is based on 
the idea of reusability. In CBD system are built from components already developed and 
prepared for integration. CBD therefore offers many advantages such as: effective 
management of complexity, reduced time to market, increased productivity, improved quality 
and a wider range of reusability. [1] 
 
Component based software engineering (CBSE) is a structured and systematic approach 
aimed at providing processes and technologies for CBD. CBSE is based on the concept of a 
component. It also introduces other fundamental concepts such as: interface, framework, and 
model. These concepts will be put into perspective in the following sections. [1] 
 

2.1. Components 

 
 A component is a reusable unit of deployment and composition [1]. Components are the 
fundamental building block of component based systems and must therefore be completely 
understood. However no consensus still exists about what a component really is, thus there 
are many different definitions. From a practical perspective component comprises many 
important parts that need to be considered and specified. Also the environment whose part the 
component will be must also be understood and specified.  
 
 
Fundamental component characteristics can be summarized as: [14] 
 

• Standardized – a component used in a CBSE process must conform to a component 
model which may define interfaces, composition and deployment rules etc. 
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• Independent – it must be possible to compose and deploy a component without 
explicitly requiring any other components 

 

• Composable – all components interactions must occur through the components public 
interface and the component must provide information about it self 

 

• Deployable – a component must be able to operate as a standalone entity on a 
component platform supporting the component model 

 

• Documented – component must contain both its syntactical and semantical 
specification required for its possible usage 

 
Viewed externally, component is defined through its interface that becomes the access point 
to the component considering that the component is a black-box, i.e. components internal 
implementation is not accessible from the outside. Practically, the black-box principle cannot 
always be achieved. Separation of the components implementation from its external access 
point is similar to the concept of encapsulation in object oriented development and it serves a 
similar purpose, i.e. the implementation can be changed without affecting the users of a 
component. Also it is possible to extend the interface without changing the implementation.  
 
From a functional point of view, a component offers some services to its environment, i.e. to 
its users. Thus the components interface must specify the service that the component 
provides. Specification of a service that a component provides must be given on both the 
syntactical and the semantical level. Service syntax specifies such things as the formal 
components interface, methods for access and their signatures etc. Thus the syntactical 
segment of the interface describes what the component does. Service semantics specify how 
the component works, under what conditions does it perform the declared functionality, what 
guarantees does it give about its performance etc. Interfaces defined in standard component 
technologies today can express functional properties. Most description techniques for 
interfaces such as interface definition language (IDL) only cover the signature part. Such 
techniques are not sufficiently good for expressing extra functional properties of components, 
such as: accuracy, availability, latency, security. 
 
There are generally two kinds of interfaces. Components can export and import interfaces to 
and from environments that may include other components. An exported interface describes 
the services provided by a component to the environment, whereas an imported interface 
specifies the services required by a component from the environment. [1] Various graphical 
notations are used but the fundamental principles of exported and imported interfaces are the 
same. 
 
 

component

provided 

interface

required 

interface
 

 
Figure 2.1 Simple component with a provided and a required interface 
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2.2. Component models and frameworks 

 
 Component model is a standard that comprises information about the structure of 
components interface and ways to implement, document and deploy component that conform 
to that model. Thus component models are used by software developers that wish to use a 
certain component model and must ensure interoperability with other models possibly used. 
Component models are implemented in frameworks, i.e. component platforms. The key 
contribution of frameworks is that they force components to perform their tasks via 
mechanisms controlled by the framework, thus enforcing the observance of architectural 
principles defined in component models.  
 
A framework can be seen as a circuit board in which empty positions are waiting for the 
insertion of components. The framework (the circuit board) is instantiated by filling in the 
empty slots. Requirements are specified to indicate to what the components must conform to 
be able to function as intended in the circuit. The internal details of the specification (the 
implementation) are still concealed within the component and should remain so. [1] 
Component frameworks are thus filled with components and instantiated in this way. 
Examples of ubiquitous component models are Microsoft .NET, JavaBeans, OMG Corba, etc. 
 
 

Component model

Interfaces Usage information Deployment and use

-Interface definition

-Composition

-Customisation

-Meta-data access

-Naming convention

-Packaging

-Documentation

-Evolution support

 
 

Figure 2.2 Elements of a component model 

 
 
A component model implementation typically provides two kinds of services [14]: 
 

• Platform services, which are the fundamental services that enable communication of 
components with each other. For example: addressing, interface definition, exception 
management, component communication, etc. 

 

• Horizontal services, which are application independent services which may be reused 
by many components and systems and thus reduce the development costs and potential 
incompatibilities. For example: concurrency, security, transaction management, 
persistence, resource management etc. 

 

2.3. Component composition and the CBSE process 

 
 One of the reasons why CBD has not become a major approach in software development 
is that a fundamental reuse principle hasn’t been satisfied which says that the component 
based development must be an integral part of the entire development process. Thus it is not 
possible to successfully use traditional development processes for CBD if they have not been 
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adapted to the details of the CBSE process. Some parts of the process, like gathering user 
requirements remain the same, however there are certain fundamental differences.  
 
Requirements should initially not be highly specific because very specific requirements 
significantly reduce the number of potential component models that can be used for 
development. Therefore, requirements should initially be kept flexible and adaptable to the 
situation with the available component models. Still, a complete set of requirements is 
required so that as much reuse possibilities can be identified. 
Unlike traditional development, CBSE process contains a component search phase after 
which the component that best fit the given requirements are selected and adapted. The need 
for adapting the selected components to the specific details of the project is highly probable.  
Development in a CBSE process is then essentially a composition process where the selected 
and adapted component are composed together and integrated with the infrastructure, i.e. the 
platform for deployment. Glue code will most likely have to be developed to enable the 
composition of possibly incompatible components. [14] 
 
 

Component 

search

Component 

validation

Component 

selection

 
 

Figure 2.3 Component related elements of the development process 

 
 
Finally, selected and adapted components are composed into the final system. Assemblies of 
components are thus formed and deployed on the platform. Ways in which components are 
assembled and integrated with the platform are defined by the component model. There are 
various types of composition, such as sequential composition where components are executed 
in a sequence, hierarchical composition where a component uses services of another 
component, and additive composition when multiple components form a new component 
(assembly). Different kinds of problems can occur during component integration, such as: 
parameter incompatibility, operation incompatibility and operation incompleteness. 
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3. ProCom – Progress Component Model 
 

3.1. Introduction 

 
 As mentioned earlier, goal of this thesis is to analyze various behavior modeling 
languages and to investigate ways to apply these languages to the ProCom component model. 
This chapter analyses the component model itself and outlines the elements of the model 
important for achieving the overall thesis goal. 
 
The ProCom component model is part of the larger project being run at Progress, a national 
Swedish research centre. Primary interest to Progress is the application of component-based 
software engineering to the automotive and vehicular domain. The basic idea is that building 
embedded system from reusable software components results in increased cost-efficiency, 
increases scalability in handling complexity and integration, as well as a higher quality 
insurance. The expected outcome of the project is to provide a complete set of theories, 
engineering methods and tools that can be used for the development of embedded systems.  
 
All this is intended to be utilized for the purposes of achieving the main goal, which is 
predictable embedded-software development from reusable software components. Other two 
important goals are interfacing the developed software with the underlying platform, and too 
apply real-time techniques at all stages of component-based design.  
 
It is worth mentioning that Progress initially declares a general perspective towards the 
development of embedded vehicular systems, but acknowledges that the component-based 
approach seems most feasible. Therefore Progress takes a component-based approach to the 
development of embedded systems for the vehicular domain.  
 
Considering the importance of quality attributes such as security, safety, predictability and 
resource-efficiency, Progress claims that using a design-time component model is the most 
promising solution. Design-time component models are composed at design time and the 
analysis of components and assemblies is also done at design time. This is considerably 
different from component models such as Microsoft .NET or CORBA. Design-time analysis 
is essential for achieving predictable behavior and any other kind of early predictions about 
the system and its properties. In addition to that, the analysis stage is expected to provide all 
kinds of algorithms and methods for predicting system properties. 
 
In order to achieve predictability, a strong emphasis is put on analysis to provide estimations 
and guarantees for different system properties. Analysis is present throughout the whole 
development process and gives results depending on the completeness and accuracy of the 
models and descriptions. Early, inexact analysis may be performed during design to guide 
design decisions and provide early estimates. Once the development is completed, analysis 
may be used to validate that the created components and their composition meet the original 
requirements. The different analyses planned for Progress include reliability predictions, 
analysis of functional compliance (e.g. ensuring compatibility of interconnected interfaces), 
timing analysis (analysis of high-level timing as well as low-level worst-case execution time 
analysis) and resource usage analysis (e.g. memory, communication bandwidth). [10] 
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The ProCom component model consists of two layers: the upper layer ProSys and the lower 
layer ProSave. At the ProSys level, systems are modeled as concurrent subsystems that 
communicate by passing messages. The lower layer, ProSave, is responsible for the internals 
of a subsystem which are ultimately defined by the primitive components implemented in 
code. Unlike ProSys subsystems, ProSave components are passive and their communication is 
based on a pipes-and-filters paradigm. At both layers, a concept is adopted of a component as 
a collection of all the information needed to work with that component in a different time 
during the development process (requirements, documentation, source code, models etc.). 
 
Considering that the goal of this thesis is to analyze the methods for modeling the behavior of 
a single component, less attention will be given to ProSys, and more to ProSave. 
 

3.2. Overview of ProSys 

 
 At the ProSys level, main design element is a subsystem. The entire system is modeled as 
a set of subsystems that communicate together. It’s important to note that a subsystem can be 
further divided into other subsystems, which means that ProCom is a hierarchical component 
model.  
 
From a CBD point of view, subsystems can also be conceptually viewed as components. 
Differences of course exist between components and subsystems in design, implementation 
and deployment. Different subsystems, i.e. components at the system level, can be deployed 
to different physical nodes and this is also possible even for elements of a single subsystem.  
 

Subsystem S1

 
 

Figure 3.1 ProSys subsystem external view 

 
A ProSys subsystem is specified by typed input and output message ports, as shown in the 
figure above. The ports describe what kinds of messages the subsystem receives and sends.  
 
Subsystems are active, which means that they can perform activities periodically on their own 
and not just as a reaction to external stimulus. They can contain reactive parts as well.  
 
Communication between subsystems is modeled with message channels. Channels are used to 
connect output to input message ports. Message channels thus provide some additional 
functionality other then being a primitive message carrier, such as the possibility to associate 
information about the kinds of information being carried, and also to define some data 
initially required by the system to be available on the channel. Channels support n-to-n 
communication, i.e. more than one output and input ports may be connected to the channel. 
Message passing is asynchronous, i.e. sending a message is a non blocking action. The way in 
which incoming messages are handled is defined by the receiving subsystem. 
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Subsystem S1

Subsystem S2

Subsystem S3

 
 

Figure 3.2 ProSys subsystems communicating through a message channel 

 
From the point of view of implementation, there are primitive and composite subsystems. 
Primitive subsystems are realized internally through ProSave components, by code 
conforming to the Progress subsystems runtime interface or by wrapping legacy code to make 
it compatible with the runtime interface.  
 
Composite subsystems internally consist of subsystems and message channels. There are also 
connections that associate the message channels with message ports of the composite 
subsystem or the subsystems inside. This allows an input port, acting as a message consumer 
outside the component, to act as a message producer internally. Oppositely, an output port 
consumes messages on the inside and acts as a message producer from the outside. 
 

Subsystem S1 Subsystem S2

 
 

Figure 3.3 ProCom composite subsystem 

 

3.3. Overview of ProSave 

 
 
 ProSave is a design language primarily intended for developing primitive ProSys 
subsystem with complex control functionally. Naturally, it is component based and a 
component is the fundamental building block in ProSave. A ProSave subsystem is thus 
constructed from interconnected components. Component can also be hierarchically 
structured.  
 
ProSave components are completely passive, which means that they never initiate any 
activities on their own. Components don't have their own execution threads. They must 
therefore be activated by some external entity through some stimulus. After they have been 
activated (stimulated), they perform their functionality and return to the passive state.  
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It is important to note that ProSave components are design-time entities that do not exist as 
individual units in the final system that is being executed on some physical machine. During 
the deployment process, they are transformed into operating system tasks, which greatly 
improves efficiency of the final system, and this is of great importance in the target domain of 
ProCom. 
 
ProSave architectural style is based on data/control flow that explicitly separates the flow of 
data from the flow of control.  
 
In the following two sections, structure and the behavior of ProSave components are 
analyzed. The structure of a component is only its externally visible interface, whereas the 
internal structure is actually the components behavior. 
 

3.3.1.  Structure of ProSave components 

 
 A ProSave component is the fundamental building block when constructing subsystem at 
the ProSave level. It is intended to contain small and non-distributed functionality. 
Component external structure consists of two major elements: ports and attributes. 
Component ports provide the way to access components functionality, and component 
attributes provide the way to access information about the component. 
 
A ProSave component is a black-box from the outside, i.e. its internal implementation is not 
visible or directly accessible. This black-box view is considered reasonable, however some 
more complex analysis procedures may require a white-box view of a component, i.e. access 
to its internals. For example synthesis will definitely require a white-box view of a component 
considering that components are ultimately indistinguishable in the final system.  
 
The separation of the data flow from the control flow is done by having two separate types of 
ports: data ports and trigger ports. The data flow is carried through the data ports and the 
control flow is carried through the trigger ports. From the direction point of view, both trigger 
and data ports can be of input and output type. Trigger ports are depicted as triangles and data 
ports as squares. 
 

Component 

C1

 
 

Figure 3.4 ProSave component with two input ports (left) and three output ports (right) 

 
Component behavior is modeled through the concept of services. When multiple services are 
provided by a single component, it is necessary to enable separate external access to them, 
and it is done by forming group of ports.  
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Service 

S1

Service 

S2

 
 

Figure 3.5 Port groups on a ProCom component with multiple services 

 

3.3.2.  Behavior of ProSave components 

 
 
 Internally, the functionality of a component can be implemented in code (primitive 
component), or by interconnected subcomponents (composite component), but the distinction 
is not visible from the outside. Only primitive components are considered here, since 
composite components are ultimately also built from primitive components. 
 
As described earlier, a ProSave component is passive, i.e. it never initiates any activities on its 
own and it does not have its own execution thread. Component can only react to some 
external stimulus, after which it will perform its functionality and produce some response on 
its output ports. Taking into consideration the data/trigger paradigm in ProSave, when the 
input trigger port is activated, it reads the current value at the input data port and starts 
processing this value according to the implemented functionality. When the calculation has 
finished, the result is produced at the output data ports on the components right side, and 
control is forwarded/returned via the output trigger port. 
 
The concept of service was introduced in the previous section. Component will always 
provide at least one service, however it can provide more than one. This means that different 
services within a single component can produce parts of the result at different points in time. 
Each service therefore corresponds to some particular functionality that a component 
provides. Services are triggered independently and may run concurrently. Following elements 
constitute a single component service: 
  

• input port group, that contains a single trigger port for service activation and a set of 
data ports for providing required data to the service 

 

• set of output port groups, that contains a single trigger port for forwarding the control 
and a set of data ports for providing the result of services functionality. 

 
The port to port-group relation and the port-group to service relation are clear from the figure 
above. 
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During its lifetime, a service state is changed from active to inactive and vice versa. Initially, 
all services of a component are in an inactive state. In this state it is possible for them to 
receive data and trigger signals on the input ports, but no computation is performed internally. 
When an input trigger port is activated, i.e. when a control signal comes to the component, all 
the data ports in the group are read in one atomic operation. When the data has been gathered 
the service switches into the active state and it performs its computation and produces output 
at the output group. The data and triggering of an output group are always produced in a 
single atomic step. When in the active state, a service can not be triggered again, i.e. attempts 
of reactivation on the trigger ports are ignored. This must be enforced by a design-time 
checker, and not at runtime to ensure high efficiency. 
 
The functionality of each service is implemented by a non suspending C function. The 
component also has an init function which is called at system startup to initialize the internal 
state. A primitive component specifies a header C file and a source C file, where the init 
function and the service entry functions are declared and defined. The header file also 
declares the structs used for input and output to the services. By default, the naming of entry 
functions and argument structs is based on the names of services and ports, but explicit name 
mappings can also be supplied. [10] 
 
During synthesis, the design-time components are transformed into runtime entities, such as 
operating system tasks. It is the responsibility of synthesis to ensure that the behavior of the 
runtime system is consistent with what is specified by the execution semantics and the 
ProSave design. For example, although the semantics view data transfer on different levels of 
nesting as separate activities, the final system may realize communication between two 
primitive components on different levels by a single write to a shared variable, ignoring the 
intermediate steps of activating input and output port groups, as long as the overall behavior is 
consistent with the execution semantics. [10] 
 
Restrictions on data/control delivery are not complex. One rule is that trigger signals should 
not arrive to trigger ports before all data has arrived at data ports. Furthermore, when data 
reaches a port, it immediately overwrites the current value of that port. Also as mentioned 
earlier, triggering of a service in a active state is ignored. If the service is in the inactive state, 
then the values of the data ports of the triggered port group are atomically read, the state 
changes to active and the component performs its functionality. 
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4. CCL – Construction and composition language 
 

4.1. PECT perspective 

 
 CCL is part of the PACC (Predictable Assembly from Certifiable Components) initiative 
from the Software Engineering Institute at Carnegie-Mellon University. The PACC initiative 
has taken the prediction approach to CBD. It is the PACC position that predicting the 
behavior of components and assemblies is the only feasible future for CBD. It is therefore in 
the PACC objective to investigate and develop supporting technologies for making such 
predictions in a systematic and standardized way. 
 
Considering that predictability is a fundamental issue in PACC it is necessary to define what a 
predictable assembly really is. Assembly of components is defined to be predictable if its run-
time behavior can be exactly determined from the properties of its components and their 
interaction mechanisms. This is a simplified definition of predictability and it is discussed in 
more detail later.  
 
Another fundamental issue in PACC is the certifiability of components. A component is said 
to be certifiable if its properties can be measured or verified by third-parties. 
 
It is important to note that PECT is one possible approach to PACC. The fundamental 
assumptions of PACC are always the same: achieving assembly predictability from certifiable 
components. PECT offers one solution to this problem through the use of reasoning 
frameworks. PECT is, in short, a platform for predicting assembly behavior. It is therefore 
required from the PECT to support (1) the analysis of component and assembly properties and 
(2) the prediction of component and assembly properties. A PECT is generally made up of 
two parts: an analysis technology and a component technology. 
 
It's important to emphasize that PECT is only a concept (a blueprint) that must be applied to 
some concrete component technology (component model). In order to „transform“ a existing 
component technology into a PECT, the constructive segment must be adapted, and an 
analytical segment must be defined and added. Through this process, a new component 
technology is created (PECT). 
 
As mentioned already, a PECT has two main parts: a construction framework and one or more 
reasoning frameworks. Reasoning frameworks are connected to the construction framework 
via interpretations. 
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PECT – Prediction Enabled Component Technology
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Figure 4.1 Logical structure of Prediction-Enabled Component Technology 

 
Each concrete component technology is „transformed“ into a PECT through the concept of 
the construction framework. The construction framework essentially consists of two elements: 
abstract component technology (ACT) and a construction language. It is the purpose of the 
construction language to describe a concrete component technology into a ACT. Therefore the 
ACT is a description of a particular component technology written in the construction 
language.  
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Figure 4.2 UML diagram of PECT concepts 

 
In this case the construction language is the Construction and Composition Language (CCL). 
The purpose of using a single language is to enable the use of existing PECT tools with any 
component technology that has been transformed into a PECT.  
A second purpose of the language is to enable the description of assemblies in the given ACT.  
 
Therefore the construction language (CCL) enables, among other things, the description of: 
 
(1) Assembly structure (component composition, etc.) 
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(2) Component behavior, interaction mechanisms (from the model), services (from  the 
runtime) 
 
(3) Properties required by different reasoning frameworks (these properties can be  
    attached to different elements in the specification)  
 
The majority approach to predicting the behavior of software systems today is software 
testing. Testing must be done very rigorously and the test results are of value only for the 
system being tested. Therefore the fundamental assumption is that by watching and analyzing 
the past, we can predict the future.  
 
The PACC project takes a radically different approach and aims to enable prediction by 
creating analytical theories for entire classes of systems. As soon as a system satisfies the 
assumptions of a particular theory, it is predictable within that theory. The result of this is a 
specific view of the „world of all assemblies“ where we only recognize assemblies that are 
well-formed with respect to a analytical theory and thus that are predictable. All other 
assemblies are not predictable. The main goal then is to only build assemblies whose behavior 
can be predicted and we don't (and can't) predict the behavior of arbitrary non-valid 
assemblies. Therefore analytical theories impose certain design constraints. 
 
The focus in the PACC project is on developing analytical theories for system properties of 
significant business value such as: reliability, safety, security etc. 
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Figure 4.3 Relation of the predictability zone and the analytic theory 

 
The bases of an analytical theory are the assumptions that the theory makes and these 
assumptions influence the required knowledge about the component and confidence in it. For 
example a safety theory might require that a component specification contains a state machine 
of component operations, etc. So its obvious that with regard to analytical theories 
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components cannot be idealistic black boxes because the theories require insight into 
component implementation and internal behavior.  
 
This information required by the theories is acquired from the component through a analytic 
interface. These interfaces provide analysis-specific views of a component. A confidence in 
these interfaces is also essential in achieving overall prediction confidence. Therefore the 
PACC project has established such a foundation for building trusted and certified 
components. 
 
It can be said that two fundamental premises for achieving predictable assemblies are 
achieving predictability by construction (building assemblies whose behavior can be 
predicted) and trusting the predictions with enough confidence. Confidence is achieved 
through rigorous empirical and formal validation because it is important to establish 
quantifiable trust. 
 

4.2. Construction framework 

 
The construction framework is one of the two essential elements of a PECT. The other 
essential element are the reasoning frameworks which are connected to the construction 
framework via interpretations. Purpose of the construction framework is to support all of the 
usual construction activities done in component-based development.  
 
Key feature of the construction framework is that it supports CBD construction activities in a 
technology-independent way. This is the purpose of ACT (Abstract Component Technology) 
which is an important part of the construction framework. The ACT is fundamentally a proxy 
for concrete component technologies. The ACT provides the language and notations for 
specifying component, assemblies, runtime environments etc. but in a technology-
independent way. Along with the ACT, the construction framework comprises tools that 
provide support for construction activities.  
 
Following is a description of essential CBD concepts and the way they are utilized in an ACT. 
 
As in CBD in general, a component is the fundamental building block of assembly. In 
contrast of typical CBD component definition as a black-box during usage, in the PECT view 
it is clear that much of components inner structure must remain exposed for the purpose of 
prediction and certification. In the context of a PECT, a component is considered an 
implementation that provides interfaces for third-party deployment through binding labels 
(pins) and can be independently deployed. In PECT, components final form is an executable 
binary, and not source code. A PECT component can be considered a unit of independent 
deployment if it has all of its dependencies on external resources specified and if it can be 
substituted by, or substitute of, another component. [3] 
 
Components interfaces are realized through incoming sink pins, and outgoing source pins. 
Sink pins are responsible for incoming events to a component, whereas source pins are 
responsible for events outgoing from a component. The sink/source pin paradigm is 
equivalent to the provided/required interface paradigm present in other literature. 
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Component C1

 
 

Figure 4.4 Simple CCL component 

 
Component behavior is specified in the form of reactions. Reactions essentially describe the 
connection between components sink pink and its source pins. This means that reactions 
define ways in which the component will react to external stimulus on its input pins. The 
fundamental reaction that a component can perform is to emit a event as a response to a 
incoming stimulus.  
 
The minimal description of a reaction contains only information about sink and source pins 
involved in the reaction, however a more complex mechanism for specifying reactions is 
required. PECTs have primarily used CSP process algebra for describing reactions. The main 
drawback with CSP is its complexity. Recently, CSP has been replaced with a action language 
based on UML state charts. The state chart version is described in the CCL section.  
 
It is important to note that reactions can be described through formal implementations in 
languages such as Java, or they can be described in an abstract way with languages such as 
CSP. Only requirement is that the reactions specification is parsable. 
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Figure 4.5 Reaction specification in CSP (left) and an equivalent transition system (right) 

 
Except for internal behavior of components, there is also external behavior among 
components, i.e. their interactions inside an assembly. Interactions describe composite 
behavior of multiple components, or more precisely, of multiple reactions. It is naturally 
required that components are interconnected before they can interact with each other. 
Components are therefore considered connected/composed if their pins are connected 
together. The existence of this connection between pins means it is possible for a interaction 
to occur but it is not obligatory. The behavior of a composition of components can be deduced 
from the behavior of its constituting reactions.  
 
The PECT expects that the utilized concrete component technology has some form of a 
runtime environment. The term runtime environment is in other literature also known as: 
framework, container, platform etc. No matter what the name is, common and fundamental 
functionality is important. The environment [3]: 
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 (1) provides services to components and assemblies (transaction, security, etc.).  
 (2) manages resources (thread pools, database connections) 
 (3) manages component life cycles.  
 
The environment can therefore be considered as a special kind of component with which other 
component/assemblies/environments may interact. It must also provide a concrete 
implementation of the interaction mechanisms (communication protocols) for the components 
to use. The environment must also provide support to assumptions required by reasoning 
frameworks. In this respect, the environment can be considered a component-aware virtual 
machine [3]. Structurally, the difference between components and assemblies/environments is 
that components cannot have internal structure whereas assemblies and environments can and 
must. 
 

Environment 

E1

Clock Log

 
 

Figure 4.6 Simple CCL environment with two services 

 
Generally there are synchronous and asynchronous modes of communication, and pins can 
further specialize this modes. Synchronous communication mode can be specialized by pins 
denoted in the construction framework language as sink mutex which enforce mutual 
exclusion on reaction within a component or by pins denoted as sink reenter which permit 
concurrent behavior of reactions. Asynchronous communication mode can be specialized by 
pins denoted as unicast or multicast which is self-explanatory. Synchronous pins can be 
visually distinguished from asynchronous pins because they have single-lined pin heads, 
whereas asynchronous pins have double-lined pin heads.  
 
In principle, asynchronous communication is based on exchanging messages between parties 
communicating together. Synchronous communication, on the other hand, involves some kind 
of a procedure call, i.e. it requires some kind of a established communication channel between 
the communicating parties.  
 
Summary of interactions provided by an environment: 
 

• Asynchronous (event-based) interaction through an unbounded priority queue. 
Priorities are taken from the priorities of reactions that emit them. 

 

sourcesink Pri.

queue  
 

Figure 4.7 Unbounded asynchronous interaction in CCL 
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• Asynchronous (event-based) interaction through an bounded FIFO queue of length n.  
 

sourcesink [n]

 
 

Figure 4.8 Bounded asynchronous interaction in CCL 

 

• Synchronous (call-return) interaction through a semaphore acquired by the calling 
reaction, i.e. the reaction is in a protected critical section. 

 

sourcesink

 
 

Figure 4.9 Synchronous interaction in CCL 

 
Components by themselves of course have no purpose and they must be composed into 
assemblies. Assembly is therefore a set of components that can interact. Assemblies 
themselves have no behavior of their own, i.e. their behavior is indirectly the behavior of their 
components. Assemblies can be contained by other assemblies, thus forming a structural 
hierarchy.  An assembly provides constructive closure to a component which means that all 
components interactions are confined only to its immediate assembly. Since interactions 
among components are provided by the environment, each assembly is associated with 
exactly one environment. 
 
Assemblies are subject to the same type/instance paradigm as well as components and 
environments. For the purpose of achieving assembly hierarchy, i.e. having assemblies inside 
assemblies, an assembly can expose a particular pin that belongs to one of its contained 
components.  
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Figure 4.10 Simple CCL assembly Inner1 in environment E with log and clock services 
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Figure 4.11 Assembly hierarchy through exposed pins 

 
 

4.3. Reasoning frameworks 

 
 The purpose of the reasoning framework is to analyze and predict the behavior of 
assemblies based on the description of properties of components and assemblies. Reasoning 
frameworks contain concepts and theories required to analyze and predict assembly qualities. 
Naturally, different reasoning frameworks are required to predict different runtime qualities. 
They use different component properties as inputs and give different requirements on what is 
and what is not an analyzable design. 
 
The reasoning framework is essentially a way PECT packages the complexities of model 
checking technologies combined with component technologies. This allows the developer to 
predict the behavior of component-based systems without having expertise in analysis 
technology.  
 
The interpretation is the link between the ACT (only 1 in a PECT) and each reasoning 
framework (at least one in a PECT). The purpose of the interpretation is to relate concepts 
from both frameworks. More formally, the interpretation is used during the translation of the 
construction language assembly specification into a reasoning framework understandable 
language. Therefore, reasoning frameworks are applied to assembly specifications by means 
of formal interpretations that generate analysis models from CCL specifications. Most 
interpretations use general CCL information, but specific analysis information is provided 
through CCL annotations. 
 
The reasoning framework used in PACC is Comfort. Comfort is a model checking reasoning 
framework that provides a way to incorporate model checking techniques into a PECT.  
 
Fundamentally, formal verification implies having a mathematical model of a system and 
describing system properties in a formal language. If the system behaves according to its 
specifications, then it is said that the model satisfies the specification.  
What model checking brings is automation, thus model checking is a completely automated 
form of formal verification that checks if a system satisfies a constraint by exhaustively 
searching through all possible states of the system. This exhaustive searching eliminates 
classical testing coverage problems. Model checking verifies finite-state concurrent systems. 
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This limitation allows complete automation. Also, model checking will always terminate with 
a yes or no answer, i.e. the model satisfies or does not satisfy the constraints.  
 
 It is important to note that the restriction to finite-state systems is not a disadvantage 
because it is still applicable to a lot of important classes of systems, such as hardware 
controllers, communication protocols, etc. Non-finite software may be verified if variable 
values are assumed over finite domains. This is also not a restriction because many important 
classes of systems, such as message queues can be restricted from infinite to finite queue 
lengths. 
 

4.4. Component certification 

 
 Achieving assembly predictability is a fundamental issue in PACC. A crucial condition 
for this is trusting the components that make up the assembly. PACC acknowledges that 
components are possibly subjects to third-party composition, which is reason enough to have 
a sound mechanism for providing trust in components. Since components are now days 
mostly shipped as binary code ready for execution it is important to create certified binaries, 
i.e. binaries that are trustworthy. But for a consumer to believe that a component is 
trustworthy, he must be able to verify this in a formal way.   
 
A core idea used in PACC is proof-carrying-code (PCC) concept. Considering that a 
consumer will always request that a component satisfies a certain policy, the idea of PCC is to 
create a proof that the component satisfies this policy, embed the proof into the component 
binary and then ship it as a single unit. A consumer can then verify the validity of the proof on 
his own. 
 
Policies most used today are safety policies, while proofs require considerable resources 
because of their size. PCC expands the policy set to include both safety and liveness policies. 
A linear temporal logic called SE-LTL is used to specify these policies. SE-LTL was also 
developed as a part of the PACC project. PCC uses automated model checking techniques for 
generating invariants and ranking functions required for proof construction. PCC also uses 
state-of-the-art SAT (Boolean satisfiability) technology to reduce the size of proofs to 
minimum. 
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Figure 4.12 PECT certification procedure 

 
 
Figure above describes the certification procedure. Certification procedure begins with a CCL 
specification of a component assembly. The specification will contain a structural and 
behavioral description of the assembly as well as the safety and liveness policies that need to 
be certified. Required policies are specified in SE-LTL temporal logic. 
 
The specification is then transformed (step 1.) into a form understandable by a model checker. 
This form is made up of C code and finite state machine specifications.  
 
The model is transferred (step 2.) to the software model checker Copper. During its work 
Copper uses functionality of external SAT solvers and theorem provers to produce results. 
One possible outcome from Copper is a proof (Proof1) that the given model in fact satisfies 
given policies. The other possible outcome is a counterexample demonstrating why the model 
doesn’t satisfy the policies. What Proof1 really means is that the (C+FSM) model of the given 
CCL specification satisfies the given policies.  
 
This must also be proven for the CCL specification itself which will establish the correctness 
of the interpretation from the specification to the model. Therefore Proof2 is generated which 
proves (step 3.) that the CCL specification was correctly reverse-interpreted from the model.  
 
The CCL specification is transformed into a Pin/C program runnable in a Pin runtime 
environment. This transformation works on the CCL specification, but also on the proof 
(Proof3) that the specification is correct, thus generating proof that the Pin/C program is also 
correct and satisfies given policies.  
 
Finally, using a compiler, the program is transformed into binary code (step 5.) 
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4.5. Pin component technology 

 
 The Pin component technology is the only concrete technology  that has so far been 
utilized for purposes of a PECT. As every component technology, Pin is comprised of a 
component model and a runtime environment. The component model defines the logical level 
of component and application structure as well as general interaction rules. The runtime 
environment, on the other hand, implements these rules and provides basic services, such as 
resource management, communication etc. 
 
Pin has been completely developed at the SEI institute as a separate component technology, 
but has been developed for use in a PECT. 
 
The target class of systems are embedded, safety-critical and time-critical systems. This 
means these systems are very small in implementation. It also means the implementation is 
very transparent because a lot of hiding would be too costly, unnecessary and thus 
counterproductive for this class of systems. Pin has been successfully implemented and used 
in real applications.  
 
It is important to note that generally PECT is not formally restricted to the usage of Pin. Since 
PECT is a concept, i.e. a blueprint, it can be applied to any concrete component technology. 
However up to date, only Pin has been successfully used for a PECT implementation. 
 
While designing Pin, some overall design objectives were kept in mind. (1) A simple 
programming model was required, as well as a very simple execution model that supported 
the UML state chart semantics. This requirement is important from both the usability and 
automation viewpoint, since a simple model simplifies the translation of code. Also changes 
to the Pin implementation are less likely to reflect on code generators. Also UML, as a widely 
spread language, enables the specification of component behavior as well as a basis for formal 
development, in a standard language. (2) A mechanism was needed to enable enforcement of 
external design and implementation constraints. (3) Only most basic features required for a 
PECT were introduced. 
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Figure 4.13 Pin logical structure 
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4.6. PACC Starter Kit 

 
 The PACC starter kit is a complete software solution with all the technologies developed 
in the PACC project combined together to provide a usable tool. The starter kit is based on 
Eclipse.  
 
 Main functionality provided by the starter kit: 
 

• specification of components and assemblies of components in CCL. 

• prediction of component and assembly behavior through behavior analysis 

• generating binary code that implements the specifications 
 
For the purpose of component and assembly specification, the Kit provides a CCL parser and 
the CCL compiler to generate implementations of the specifications in the target Pin 
component technology. The Kit thus contains the Pin component technology, i.e. the 
component model API and the runtime environment.  
 
From the analysis and prediction perspective, the Kit contains a performance analysis 
reasoning framework that can be used to analyze worst and average performance of 
component and assemblies specified in CCL. A generalized rate monotonic scheduling theory 
is used as a supporting analytical theory. The Kit also contains a behavior analysis reasoning 
framework for behavior verification with model checking as the supporting analysis 
technology. A security analysis reasoning framework is also included for finding buffer 
overflows in C programs also with model checking as the supporting analytical technology. 
Finally, a memory analysis reasoning framework is included for predicting minimum page 
file sizes used by assemblies. 
 
 

4.7. CCL – Construction and composition language 

 
 PACC initiative is based on using PECT's (Prediction Enabled Component Technologies) 
which include a component technology and one or more reasoning frameworks. The purpose 
of PECT is to enable the prediction of component and assembly behavior with respect to 
those frameworks. The prediction process is based on certifiable properties of components 
and their specifications. The language used for writing such specs is CCL. So CCL 
specifications represent everything a reasoning framework needs to know in order to predict 
component and assembly behavior. There are also a number of automated tasks in the entire 
prediction process that can be automated with the help of CCL.  
 
Information that CCL specifications provide can be divided into three general groups:  

• structural information 

• behavioral information 

• analysis specific information. 
 
Only structural and behavioral specifications will be further analyzed as they are most 
significant in defining a component.  
 
Specifically a concrete CCL specification contains: 
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• component annotations – used for supplying additional information to the Pin code 
generator (optional) 

• variable declarations – standard programming language variables (optional) 

• structural specification – description of components externals (pins) 

• behavioral specification – description of components internal behavior (reactions) 

• verbatim code – CCL mechanism that enables the use of arbitrary C code as part of 
components behavior 

 
 CCL is formally defined through a language grammar. The starter kit provides an 
environment that supports the creation, validation and further usage of a CCL specification. 
The grammar is textual therefore CCL specifications are created and used only in pure textual 
form. Graphical notation may be used informally when specifying component structure and 
behavior but it is currently not supported by the development environment.  
 
Structural features of CCL are later introduced in graphical notation, and then in the formal 
text notation as they are defined in the grammar.  The graphical notation used corresponds to 
the way components and assemblies are represented in the Pin component technology.  Usage 
of informal Pin notation makes sense since Pin concepts are mirrored in the language. It is 
also important to mention that CCL is therefore an IDL to the Pin component technology.  
  
Behavioral specifications of components may be informally given in standard UML state-
chart notation given that the action language is based on the state-chart language. However a 
CCL specific syntax is used for the textual representation of UML state-charts. CCL is 
therefore also a surface syntax for UML state-charts.  
 
Part of the language responsible for specifying component behavior is called the action 
language. The CCL action language is C-like in syntax but is much more restrictive than C. 
An example of a restriction is the absence of pointers in the language.  CCL follows the 
general C syntax for variable declaration: the type name and variable name are followed by an 
optional initializing expression.  The initializing assignment occurs exactly once, when the 
component is instantiated. CCL supports the string, boolean, enum and several int and float 
types.  Multi-dimensional array types can also be defined using C typedef syntax.  Arrays in 
CCL are much more restrictive than C arrays, for example, the bounds of all array dimensions 
must be statically defined. 
 

4.7.1. Structural elements of specifications 

 
 Primary focus here is on the specification of a single component.  In CCL, as well as 
CBD in general, a component is the fundamental structural element of an assembly. The 
PACC project recognizes the concept of a component in the context of component types and 
component instances. In CCL the concept is formalized through the component keyword used 
in formal specifications of a CCL component type.  
 
The structural part of the component specification specifies how the component interacts with 
its environment. In CCL the only way a component interacts with its environment is through 
its pins. There are no other ways of communication with the component. The structural 
specification defines for example the type of communication with the environment, type of 
data exchanged with the environment etc. 
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There are two types of pins: sink pins and source pins. The component receives stimulus for 
communication only through its sink pins and it initiates communication with the 
environment only through its source pins. Pins are formalized in CCL through the use of sink 
and source keywords. 
 
Figure below shows the graphical syntax used in CCL for describing the components 
structural information. 
 

Component 
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snk2

src1

src2

pin name

sink pins source pins

pin head

componentcomponent name  
 

Figure 4.14  CCL component structural information 

 
 
By convention, sink pins are placed on the left side of the component, and the source pins are 
placed on the right side of the component, which according to the CCL specification, „allows, 
at the cost of some cultural bias, to read the component from left to right“. 
 
Generally there are synchronous and asynchronous modes of communication, and pins further 
specialize these modes. Type of communication supported on a pin is defined in the 
component specification using the synch and asynch keywords.  
 
Synchronous communication mode can be specialized by pins denoted as sink mutex which 
enforce mutual exclusion on reaction within a component or by sink reenter which permit 
concurrent behavior of reactions. Asynchronous communication mode can be specialized by 
pins denoted as unicast or multicast which is self-explanatory. Synchronous pins can be 
visually distinguished from asynchronous pins because they have single-lined pin heads, 
whereas asynchronous pins have double-lined pin heads. 
 
In principle, asynchronous communication in CCL is based on exchanging messages between 
parties communicating together. Synchronous communication, on the other hand, involves 
some kind of a procedure call, i.e. it requires some kind of an established communication 
channel between the communicating parties. However, CCLs specification notes that it is not 
always implemented in this way. 
 
Type of data that can be transferred through component pins is defined by the pin data 
interface. The data interface of a single pin is a set of simple data types that can be transferred 
through the pin. CCL supports transfer of very common data types such as: int, short, byte, 
bool, float, double, string, void or custom types. 
 
In the figure below is an example of a simple component and its basic CCL structural 
specification. Component has a single sink pin snk1, and source pins src1 and src2. All pins 
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are intended to be used for asynchronous communication. None of the pins have declared 
arguments which mean this component will not exchange any data with the environment.  
 

Component C1

component C1(){

sink asynch snk1();

source unicast src1();

source unicast src2();

//implementation

}

snk1

src1

src2

 
 

Figure 4.15 CCL component structural specification 

 
 
 The component runtime environment is also modeled in CCL and it also conforms to the 
type/instance paradigm. The keyword environment is used for defining a environment type 
specification. Environments generally have two important roles which are implemented in 
CCL, they provide services and interaction mechanisms. Detailed CCL specifications of 
environments are expected to be delivered by PECT developers, since environments are 
expected to be reused for multiple systems. 
 
Services are defined in the environment through the keyword service. They are basically 
simple components maintained and provided by the environment to its containing assemblies 
and indirectly components. The reason why the keyword component was not used for the 
specification of services is that differences in well-formedness rules may exist between 
environment components and application components. A very specific difference between 
services and components is that components are purely reactive, i.e. they cannot begin activity 
on their own, whereas services can, in fact it is expected of them. Another fundamental 
difference is that services represent environment supplied code that can communicate with the 
world outside of the assembly (such as device drivers), while all component communication is 
explicitly represented with its pins.  This is why service instances are shown on the border of 
the assembly instance, as will be seen later. 
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Figure 4.16 CCL services in an environment 

 
Assemblies are essentially groupings of components that work together to provide some 
functionality, i.e. functionality of the assembly. In CCL assemblies also follow the 
type/instance paradigm like component, environments and services. Assemblies are defined 
using the keyword assembly which introduces a new assembly type. In spite of that, the 
difference between assembly type and assembly instance is not always as clear as the one 
between, for example, component types and component instances.  
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Assemblies can exist only inside a environment which provides the services and interaction 
mechanisms they require. Interaction mechanisms between components inside an assembly 
rely on the mechanisms provided by the environment.  
 
Definition of an assembly in CCL must therefore be explicitly related to a specific 
environment. This is done through parameterization as shown in figure 1.13. When an 
assembly is defined in an environment with existing services, the quantity of service instances 
is unknown in advance. Therefore the assembly specification can make an assumption about 
this using the keyword assume.  
 
 

assembly Inner()(E){

assume{

E:Clock clock();

E:Log log();

}

//implementation

}

Assembly Inner

clock
log

 
Figure 4.17 CCL assembly specification 

 
 Components are added to the assembly by instantiation. In order to enable component 
interaction they must be connected. In CCL components are connected using the  ~>  
operator. It connects the left operand (source pin) to the right operand (sink pin). The 
language specification defines several rules that connections must conform to, for example: 
source and sink pins must have compatible interaction types (unicast source is not compatible 
with mutex sink but is compatible with asynch sink), each consume data parameter must 
correspond to a produce parameter and their types must also be compatible,  
 

assembly Inner1

comp1

comp2

clock
log

snk1

snk2

src1

src2

src3

src4

assembly Inner()(E){

assume{

E:Clock clock();

E:Log log();

}

Comp comp1(),comp2();//instances

...

}

 
 

Figure 4.18 CCL component instantiation within an assembly 

 
As mentioned earlier, CCL specifications also contain analysis specific information. This 
information concerns limitations imposed by the reasoning framework. A reasoning 
framework may specify well-formedness rules which might have to be imposed through 
additional properties in the CCL specification. CCL uses the annotation mechanism for this 
purpose. Example of such specific properties, for example thread priority specification is 
shown in figure 1.15. 
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assembly Inner1

c1

c2

clock logsrc1

snk1
src2

listen

src3

snk2
src4

src5

assembly Inner()(E){

assume{

E:Clock clock();

E:Log log();

}

Comp c1(),c2();//instances

// properties

annotate c1 {

“passIt:priority“, const

int priority = 15}

annotate c2 {

“passIt:priority“, const

int priority = 10}

//interactions

clock:src1 ~> c1:snk1;

c1:src2 ~> c2:snk2;

c1:src3 ~> log:listen;

c2:src5 ~> log:listen;

...

}  
 

Figure 4.19 Example of providing analysis specific information through CCL 

 
Considering that assemblies by them selves have no structure except from their components, 
and thus have no interface on their own, it follows that there must be a way to connect 
assemblies together. Connecting them together actually means connecting their inner 
components together. Since their components are not directly visible or accessible from the 
outside, CCL provides a mechanism for exposing certain component pins from inside the 
assembly. Other assemblies with their exposed pins can then connect to this assembly through 
its exposed pins. Not surprisingly, CCL uses the keyword expose to specify this concept. 
 

assembly Inner

clock log

ext1

assembly Inner()(E){

assume{

E:Clock clock();

E:Log log();

}

Comp c1(),c2();//instances

//interactions

clock:src1 ~> c1:snk1;

c1:src2 ~> c2:snk2;

c1:src3 ~> log:listen;

c2:src5 ~> log:listen;

expose {c2:sr4 as ext1}

}  
 

Figure 4.20 Example of exposing assembly pins with CCL 

 
Final important structural concept that needs to be covered is the assembly aggregation, i.e. 
assemblies within assemblies. This is done in a way very similar to components and is shown 
in figure 4.21. 
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assembly Outer1

clock

log

inner

clock
log

c3

ext1

src7

src8
snk3

snk5

assembly Outer1()(E){

assume{

E:Clock clock();

E:Log log();

}

//instances

Comp c3();

Inner inner(){

Inner:clock=clock;

Inner:log=log;

};

//interactions

inner:ext1 ~> c3:snk3;

c3:src8 ~> log:snk5;

expose {}

}  
 

Figure 4.21 Example of specifying assemblies within assemblies 

 
 

4.7.2. Behavioral elements of specifications 

 
 In addition to the structural specification of a component, which describes how a 
component can interact with the environment, CCL is also used to describe the internal 
behavior of a component. Component behavior description in CCL describes primarily how a 
component reacts to stimulus from the environment, which is the only possible source of 
stimulus. A component cannot stimulate itself, i.e. it cannot initiate behavior on its own.  
 
Component behavior in CCL is defined through the use of a state-chart language based on 
UML state-charts. An executable action language has been added to the state-chart language 
for CCL purposes. However the graphical state-chart notation is not included in the 
development environment. Following are two differences between CCL and State charts that 
are important to mention: 
 
CCL uses a subset of concepts defined in the UML State charts, most significantly there are 
no hierarchical states and no concurrent sub-states (within a reaction) in CCL. 
 
CCL defines more specific semantics for UML elements that are identified as „semantic 
variation points“ (e.g., the queuing policy for events queued for consumption by a state 
machine). These more specific semantics are the result of the Pin component technology 
execution semantics. 
 
Following are some fundamental concepts important in understanding component behavior in 
CCL. 
 
Component behavior in CCL (reactions) is described in a language based on state-charts. 
Basic building elements of state-charts are states and transitions between states. Therefore 
states and transitions between states are formalized in CCL. Figure below shows an example 
of a simple state-chart. 
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State A

State B

State C

transition A->B

transition B->C

transition C->A

start

 
 

Figure 4.22 State-chart describing simple component behavior 

 
Since component behavior consists of reacting to external stimuli, behavior of a component is 
described through the concept of a reaction. Reactions specify how a component will behave 
in response to stimulus from the environment on its sink pins, and what the components 
response, on its source pins, will be. Reactions are formalized in CCL through the keyword 
react.  
 
Therefore, the components environment stimulates the component through its sink pins. This 
stimulation is considered an event which induces a reaction in the component. The ultimate 
purpose of the reaction is to produce some response on components source pins, again in the 
form of an event.  
 
A reaction begins when an event has occurred at the sink pins, and its purpose is to produce 
an event on the source pins. Two kinds of events are possible at each pin: start events and end 
events. Start events are those that begin interaction with a component, and end events are 
those that terminate interactions. Start events are formalized in CCL by the ^ operator, 
followed by the respective pin name, for example: ^toc means a start event on toc pin. End 
events are formalized in CCL by the $ operator, also followed by the respective pin name, for 
example: $tic represents a end event on tic pin.  
 
CCL imposes a well-formedness rule which states that each sink pin must be associated with 
exactly one reaction. The result of this is no ambiguity concerning the components response 
to external stimulus. The rule for source pins is such that each source pin must be associated 
with at least one reaction. This enables the possibility that multiple reactions might interact 
with the same external resource that's connected to a particular source pin.  
 
Specification of a reaction contains: 
 

• specification of states 

• specification of transitions between states 

• optional variable declarations 
 
States and transitions make up the overall structure of a state-chart describing the reaction. 
States are formalized in CCL using the keyword state. Transitions are specified in terms of 
two states: stateA_ID -> stateB_ID{...}. The transition body between the curly brackets 
contains a more detailed transition specification. There is a special state called start which is 
the initial state a reaction is in.  
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The actual actions performed by the reaction (component) are specified using a action 
language that is a integral part of CCL. For each state it is possible to define a set of actions to 
perform on entering the state (using the keyword enter), and also a set of actions to perform 
when leaving a state (using the keyword exit). For each transition it is possible to define a 
action that is executed when a transition occurs, and this is defined inside the transition body. 
 
It is not necessary to define in advance all the states in a reaction. States can be implicitly 
defined through transitions, which are of course obligatory to be specified. 
 
Specification of a transition (transition body) contains: 
 

• triggers (optional) 

• guards (optional) 

• actions (optional) 
 
Triggers enable specification of events that initiate the execution of a transition. There are two 
types of triggers: event triggers and time triggers. Event triggers fire on pin events: ^pin 
(beginning of communication) or $pin (end of communication). Time triggers fire after a 
defined period of time has elapsed. Triggers are formalized through the keyword trigger. 
Time triggers use the additional after keyword which accepts an argument equal to the 
amount of time that needs to pass before the trigger can fire.  
 

environment E

clock log

service Clock

service Log

src

snk

sleep

pulse
after(10)/

^src()

$src()

run

^snk()/$snk()

environment E() {

service Clock() {

source unicast src();

threaded react ticking(src){

start->sleeping{}

sleeping->pulsing{

trigger after(10);

action ^src();

}

pulsing->sleeping{

trigger $src();

}

}

}

service Log() {

sink asynch snk();

threaded react

logging(snk) {

start->run{}

run->run{

trigger ^snk();

action $snk();

}

}

}

}  
 

Figure 4.23 Example of using triggers in a reaction 

 
Guards are specific conditions that need to be fulfilled before a transition can happen. Guards 
are essentially boolean expression on variables and pin events. 
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Actions defined for a transition execute when a transition fires. Actions enable almost 
standard programming language options, such as assignments, iterations, if-else blocks, 
performing pin events etc. This is equal to the actions that can be performed on entering or 
leaving a specific state. 
 
Several well-formedness rules are defined for transitions. One rule is that transitions in a 
reaction may only be triggered on ^sink_pin events (where sink_pin is the name of a sink pin) 
or on $source_pin events (where source_pin is the name of a source pin). This means that 
only the initiation of communication on a sink pin may trigger a transition. This rule has its 
dual, which means that only $source_pin and ^sink_pin events may be executed as actions. 
Semantics behind this are reasonable. The rules say that a reaction in component A cannon 
force component B, which initiated communication with A, to stop communicating with A. 
Only component B can end this communication, therefore A can only observe the termination 
of communication.  
 
An important issue regarding components reactions and their execution is the threading policy 
provided by CCL. Reactions can be declared threaded or unthreaded which is the default. The 
nature of a CCL thread is such that it represents primarily a unit of concurrency and not a 
concrete thread of execution, such as a thread in a programming language.  
 
In the figure below is an example of a simple component with one reaction. The reaction is 
specified both in graphical and textual form. CCL provides formal support only for textual 
description of reactions, whereas the graphical representation through state-charts is not 
formally supported in the language nor in the PACC development environment.  
 
Structural aspects of the component, as described earlier, are clearly visible both in the 
graphical and textual specification. The component in the figure has one reaction passIt which 
is graphically represented inside the component as a state-chart. The state-charts CCL 
counterpart is shown on the right.  
 
 

src1

src2

snk
component Comp

ready

work

log

^snk()/

^src1()

$src1()/

^src2()

$src2()/

$snk

component Comp(){

sink asynch snk();

source unicast src1();

source unicast src2();

threaded react passIt(

snk, src1, src2) {

start->ready{}

ready->work{

trigger ^snk();

action ^src1();

}

work->log{

trigger $src1();

action ^src2();

}

log->ready{

trigger $src2();

action $snk();

}

}

}  
 

Figure 4.24 Example of a complete CCL reaction 
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In the figure above, the passIt reaction is initially in the ready state. The transition to the work 
state requires a trigger in the form of an communication start event on pin snk. When this 
event occurs the transition will fire, and execute its defined action, i.e. it will begin 
communication through the source pin src1, and the reaction will achieve the work state. Next 
transition from the work state to log state will occur when the communication on the src1 port 
terminates, and the transition will begin communication on the src2 pin. Finally when 
communication on the src2 pin also terminates, the reaction will begin the transition back to 
the ready state, and terminating communication on the snk pin as well. Described behavior 
clearly demonstrates that this component passes data from its input to its output, hence the 
reaction name.  
 

4.8. CCL specification transformation 

 
 CCL transformation procedure is generally made up of two processes. In the first part, 
model checking, the CCL specification is transformed into a C/FSP equivalent, where safety, 
security and other policies are verified using a model checker (Copper). In the second part, 
certified source code generation, the specification is transformed into a Pin/C equivalent and 
finally into a executable binary.  
 
CCL transformation procedures are basically a part of the overall component certification 
procedure. Component certification in CCL is based on two paradigms:  
 

• CMC (Certified Model Checking) and  

• PCC (Proof Carrying Code).  
 
The CMC procedure is based on checking the validity of finite state models against policies 
expressed in temporal logic. The finite state models are generated from the CCL specification 
into a C/FSP form. The temporal logic used is SE-LTL. FSP (Finite State Processes) is a 
simple algebraic notation used for describing process models. Every FSP description has an 
associated state machine. The CMC procedure is automated and is able to cover a broad range 
of policies (including safety and liveness). A drawback is that CMC is only able to verify 
source code such as C. 
 
On the other hand, PCC works on the machine-code level and has the purpose of proving that 
specific machine code respects given policies. The proof is packaged together with the binary 
code so that it can be independently verified. PCC therefore operates only on binaries and has 
been limited to checking simple memory safety policies.  
 
The problem with both procedures is that they generate relatively large proofs.  
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Figure 4.25 Overview of CCL transformation procedures 

 
 

4.9. Certified model checking 

 
 The C/FSP form is generated first, directly from the CCL specifications, and it contains 
both the logical behavior specified by the state-chart language as well as infrastructure rules 
defined by Pin. There are a number of other restrictions on the generated C code (no internal 
concurrency, all variables are integral type, no pointers are allowed, etc.). Given that CCL 
already has a number of built-in restrictions these rules are not problematic.  
 
Policies that need to be verified are expressed in CCL specification as SE-LTL formulas. The 
policies are of course also transformed, and their resulting form are equivalent Buchi 
automatons. 
 
The generated C/FSP form serves as input to Copper, a state-of-the-art certifying software 
model checker that uses theorem provers (TP) and boolean satisfiability solvers (SAT). 
Copper will produce either a counterexample (CE) to the desired policy , or a ranking 
function, i.e. the proof that the specification conforms to the given policy. 
 
In the C/FSP form of the CCL specification, every state of the state machine described in the 
specification is realized with a standard program block. CCL language guards are replaced by 
IF statements, state transitions are replaced by GOTO statements etc. This transformation and 
thus the equivalence between the CCL form and the C/FSP forms are straightforward and 
formally defined. Implementation of inter-component communication and of annotations used 
for reverse interpretation from C/FSP to CCL are less intuitive compared to transition-goto 
analogy but are also formally defined.   
 
Inter-component communication in the model checker (Copper) is realized through FSP's 
event semantics. Message-based (asynchronous) interaction between Pin components is 
realized through FSP events. As described earlier, in Pin, inter-component communication is 
realized either in synchronous or asynchronous mode. Beginning and the ending of 
communication are defined in CCL syntax through symbols ^ (for communication start) and $ 
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(for communication end). These concepts are mapped to FSP events in the transformation 
process from CCL to C/FSP.  
 
A single begin event (^pin) is represented by the copper_handshake() function. A more 
complicated situation is when a component has a choice between multiple beginning events. 
This choice is implemented through FSP event synchronization. Since this is not described in 
C in a simple manner, FSP's specification facilities are used for this purpose. A call is made to 
the fsp_externalChoice() function, and a specification of the function behavior as a FSP 
process is given. This allows a choice among multiple events and a integer indicating the 
chosen event is returned.  
 
The second nonstraightforward element of the transformation are the annotations used for 
reverse interpretation of the C/FSP program back to CCL. These annotations are realized 
through calls to ccl_node(x) function calls. Parameters passed to the function are nodes in the 
abstract syntax tree of the CCL specification that correspond to C statements following the 
annotation. The calls to this function are eliminated from the C/FSP program prior to 
verification, but Copper includes them in the final verification result (ranking functions). 
 
The final step in CMC is to reverse-relating the generated ranking function back to the 
original CCL specification. This is done by mapping elements from the interpreted C program 
back to CCL elements. When CMC is finished, if a component satisfies all of its policies, the 
evidence of that is a ranking function expressed as nodes of the abstract syntax tree for the 
component's CCL specification. Therefore final proof that a component satisfies the specified 
policies is a ranking function (generated by Copper) expressed in the form of abstract syntax 
tree nodes of the components CCL specification. 
 

4.10. Certified source code generation 

 
 Generation of certified source code begins with the CCL specification of the component 
and the generated ranking function. Software tools for Pin/C code generation from CCL 
specifications exists within the PACC project. This code generator was extended in order to 
support generation of certified code. The generator embeds invariants from the ranking 
function into the generated Pin/C code. An important decision in the transformation design 
process was how to embed this information into the generated code.  
 
Method of embedding invariants into the code consists of making two function calls before 
the location used by each invariant. Invariant is then used as the argument to the second 
function call. After the compilation of this code, generated assembly code contains 
recognizable assembly call instructions, and instructions required to represent invariants are 
located between these calls. The Pin/C code generator was upgraded to insert these calls 
whenever invariants were provided by the ranking function.  
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1: bl __begin__

2: li %r0,0

3: stw %r0,16(%r31)

4: lwz %r0,8(%r31)

5: cmpwi %cr7,%r0,0

6: blt %cr7,.L5

7: lwz %r0,8(%r31)

8: cmpwi %cr7,%r0,9

9: bgt %cr7,.L5

10: li %r0,1

11: stw %r0,16(%r31)

.L5:

12: lwz %r3,16(%r31)

13: crxor 6,6,6

14: bl __inv__

__begin__();

__inv__((n > =0) && (n < 10));  
 

Figure 4.26 Example of the invariant embedding method 

 
Finally, the resulting Pin/C source code includes all the invariants necessary to generate a 
proof that the binary component satisfies given policies.  
 
 

else if (_THIS_->R_CURRENT_STATE == 1) {

__begin__();

__inv__(((__pcc_claim__ == 0 && __pcc_specstate__ == 8 &&

pcc_rank__ == 0 && ((-2 < _THIS_->R_i ) &&

(_THIS_->R_i != -1 ) && (_THIS_->R_i < 7 )) &&

_THIS_->R_CURRENT_STATE == 1))); /* 52 */

if (pMessage->sinkPin == 0 /* ^incr */ ) {

...  
 

Figure 4.27 Example of the final Pin/C code transformed from CCL 

 
 

4.11. Certified binary generation 

 
 Certified binary code is the final product of the PACC process. It is generally made up of 
two parts: the binary itself and a certificate, i.e. the proof of the verification condition. 
 
The certified binary is generated by simply compiling the source code using a standard 
compiler. The generated binary will contain assembly instructions, specifically calls to 
__begin__() and __inv__(...) functions. The assembly code between these calls is called a 
binary invariant.  
 
Construction of the certificate begins by constructing the verification condition VC which is 
performed for one binary invariant after another. A verification condition is generated for 
each binary invariant, thus the overall verification condition will be a conjunction of all the 
individual verification conditions. From the overall verification condition, the certificate is 
obtained by proving the VC using a SAT-based theorem prover. 
 
Once the binary and the certificate are produced, the binary is validated by checking that the 
certificate is a correct proof of the validity of the verification condition. Validation will be 
successful if and only if the certificate is a proper proof of the verification condition. When 



39 

the certified binary has been validated, the embedded binary invariants are removed from the 
final product.  
 

4.12. CCL status and its future 

 
 Primary development force for CCL has been the exploration of what constitutes a 
general language like CCL, rather then trying to rigorously syntactically define CCL. Much 
information has thus been gathered about the former, at the expense of having less syntactical 
elegance in CCL than would be generally expected. A particular area that will need to be 
looked into in much more detail are component connectors which are not yet fully stabile in 
CCL.  
 
As far as the language semantics are concerned, two approaches are considered. One approach 
suggests using structured operation semantics, while the other one suggests a solution like 
creating a UML profile for CCL (or extending the UML metamodel to embrace CCL). Both 
approaches have their advantages and drawbacks. Main advantage in favor of the structured 
semantics approach is the possibility to easily develop transformations towards different 
model checkers and development environments. The UML approach offers a better 
integration of CCL with UML environments.  
 
Generally, the language is still under considerable development. 
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5. Applying CCL to ProCom 
 

5.1. PACC and ProCom general comparison 

 
 ProCom is a software component model within the Progress project. The goal of Progress 
is to provide theories, methods and tools to increase quality and reduce costs in the 
development of vehicular, automation and telecommunication systems [10]. Therefore the 
target domain for ProCom are embedded software systems with high security, safety and 
efficiency requirements. Progress is intended to offer solutions for the entire development 
process, from a vague description to a final and precise specification ready for deployment. 
All of this, however, is still in early development phase. This is also true for ProCom which 
does not yet have a functional implementation in the form of a component model API, 
supporting runtime environment etc. In addition to modeling with components (which is the 
topic of this paper), PROGRESS puts a strong emphasis on analysis and deployment.  
 
CCL is a construction and composition language used for creating structural and behavioral 
specifications of component-based systems. CCL is an essential part of the PECT (Prediction 
Enabled Component Technology) approach to component-based development  that has been 
developed as part of the PACC initiative. The goal of the PACC initiative is to investigate 
technologies and methods for enabling reliable prediction of runtime behavior of component 
assemblies from their certifiable properties. The PECT concept has been developed as part of 
the initiative as a mean for achieving that goal. At the highest level, PECT is a scheme for 
systematic and repeatable integration of software component technology and design analysis 
and verification technology The PACC project states that achieving full reliable prediction is 
the only feasible use for the successful application of component-based development in 
software development. The general target domain for PACC are high-stakes embedded 
systems in diverse technology areas where performance, safety and security are of significant 
business value. 
 
Regarding the target domain, there is high compatibility between Progress and PACC 
projects. The focus of PACC research has been on systems with highly deterministic, 
periodic, and reactive behavior, and property theories that are either verifiable (e.g., model 
checking) or present a clear falsification strategy (e.g., latency). PACC therefore focuses on 
control-intensive systems with low data manipulation, that are often found in various 
industrial, power and other systems. Progress is focused on embedded systems that typically 
have to function under severe resource limitations in terms of memory, bandwidth and 
energy, and often under difficult environmental conditions (e.g. heat, dust, constant 
vibrations). Progress recognizes the increased requirements for real-time behavior, meaning 
that a system must react correctly to events in a well-specified amount of time, i.e. neither too 
fast nor too slow.  
 
Both projects are aimed at providing tools and methods for the entire system development 
process. PACC has gone much further in this respect then Progress. Tools and methods 
provided by PACC have been successfully used in a real prototype implementation of a 
substation automation system in association with ABB, where the PECT concept has proven 
its value in developing predictable assemblies for various types of power system controllers.  
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Progress emphasizes the importance of analysis during the system development phase and 
after the system has been deployed. Predictability is thus present in Progress in the context of 
predicting the values of certain system properties at runtime. Thus to achieve predictability, 
Progress relies on analysis to provide estimations and guarantees of different important 
properties. The analysis is present throughout the whole system development process and the 
analysis results are dependant on the level of completeness and accuracy of the component 
models and system design description. Early and inaccurate analysis may be performed 
during design to guide design decisions and provide early estimates. After development the 
analysis may be used to validate that the created component assemblies meet the original 
requirements. The different analyses planned for PROGRESS include reliability predictions, 
analysis of functional compliance (e.g. ensuring compatibility of interconnected interfaces), 
timing analysis (analysis of high-level timing as well as low-level worst-case execution time 
analysis) and resource usage analysis (e.g. memory, communication bandwidth). 
 
The PACC project takes the position that achieving reliable predictions of assembly behavior 
is the only feasible use for the successful application of component-based development in 
software development. PACC relies on mathematical methods and theories to provide basis 
for predictions of different system properties. In current software development practice 
predictability is achieved on a system-by-system basis and primarily through rigorous testing. 
This notion of predictability relies on the premise that if enough past executions are observed, 
future behavior can be predicted. Taking into account all the familiar limitations of software 
testing, a far better approach, that is taken by PACC, is to develop analytic theories that 
predict the behavior of entire classes of systems. PACC assumes the usage of both logical 
(safety, liveness, etc.) and empirical theories (latency, etc.). The focus in the PACC project is 
on developing analytical theories for system properties of significant business value such as: 
reliability, safety, security etc. Future work will extend the focus to systems exhibiting 
increasingly stochastic behavior (e.g., behavior sensitive to the distribution profiles of stimuli) 
and property theories whose falsification strategies are not inherently clear (e.g., reliability 
theories based on statistical testing of component reliability). 
 
The PACC project takes a much more formal and firm approach to predictability then 
Progress. Unlike Progress, PACC takes the position that full certifiable predictability is the 
only feasible way for successful utilization of CBD. Progress on the other hand makes no 
such assumption but does acknowledge the importance of predicting system properties. This 
difference can probably be explained by the significant difference in the development level 
between the two projects, and it is likely that Progress might, when further developed, adopt a 
position similar to the position of the PACC project. 
 

5.2. Application strategies 

 

5.2.1.  ProCom PECT development 

 
Given the nature of the PACC project and the PECT concept, primary application strategy of 
ProCom would be to develop a ProCom PECT. The PACC project identifies and describes a 
PECT development process for arbitrary component technologies. General process consists of 
four phases: 
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Definition – functional and statistical requirements of the PECT are defined, assembly 
property to analyze is determined 
  

identified need for 

predictable assembly

defining

functional 

requirements

defining required 

assembly properties

defining statistical 

goals

identified functional and 

property requirements  
 

Figure 5.1 PECT definition phase workflow 

 
Two parallel paths exist: one to define the functional requirements and another to gather the 
necessary requirements for the property of interest and set the PECT’s prediction goals. 
Properties can be any kind of a value that we are interested in, such as latency etc. Developing 
support for a property means developing the analysis support for it, i.e. the reasoning 
framework. Considering that reasoning frameworks then impose design constraints, this step 
must define what kind of changes must be done in the component model in order to supply 
components with required information about the observed property. Functional requirements 
define the range of assemblies that must be possible to produce by the construction model and 
the tolerance requirements define the desired quality of predictions based on the analysis 
methods supported by the PECT. 
 
Considering that the component model exists (at least on paper), this phase would not be as 
complex while developing a ProCom PECT. Additional time should be invested in analyzing 
the properties of assemblies that need to be observed and predicted. ProCom defines support 
for describing component attributes that might provide a basis for component information 
required by reasoning frameworks, however this must be developed much further. 
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Co-Refinement – creation of component and analysis models with a PECT instance as a result 
of this phase 
 

defining the 

construction 

model

defining the 

validation process

construction model, analysis 

model, interpretation

identified functional and 

property requirements

defining the 

analysis model

defining the 

interpretation

 
 

Figure 5.2 PECT co-refinement phase 

 
Co-refinement is basically a process of iterative negotiation between the constructive and 
analysis points of view. The constructive point of view pushes for assembly generality; the 
more assemblies that can be represented in the construction model, the better. The analysis 
point of view pushes for predictability, which implies constraining the construction model to 
adhere to the assumptions of the property theories that enable analysis and prediction. These 
forces tend to act in opposition to each other. [6]. From a practical point of view it is 
important to achieve only a level of generality that is necessary to represent some class of 
realistic systems, therefore clear bounds must be set on generality. It is also important to set 
limits to the complexity of the analysis model, because it is expected that the analysis can be 
done in reasonable time with reasonable computing resources. It is very important that the 
construction model is transformable to the analysis model, which is enabled by the 
interpretation.  
 
The co-refinement process starts with an initial description of the “languages” for the 
constructive and analysis models. The elements of the construction model language (CCL is 
an example of such a language) are influenced by the PECT’s target domains and how 
systems in those domains will be structured, developed, deployed, and sustained (evolved) 
over time. The elements of the analysis model language are simply a subset of some property 
theory that is suitable for analyzing the behavior of interest. [6]. During the development of 
the ProCom PECT, a dialect of CCL (ProCom CCL) might be developed that is customized to 
the specific requirements of the ProCom component model. 
 
A real PECT development workflow might not be as structured and formalized as the one 
shown in the figure above. Although all of the processes are shown to be purely concurrent, 
they are actually significantly intertwined and dependant on each other. During the co-
refinement phase, the reason for iteration (different then the latter validation iteration) is an 
assessment of whether the resulting constructive assembly is general enough to handle the 
required range of assemblies and whether the property theory supporting the analysis model 
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will, with reasonable computation and interpretation effort, give predictions for all these 
assemblies. 
 
The component model is, to a large extent, defined in ProCom. It would be required to 
develop a property theory for the desired property of assemblies and if needed to adapt the 
model according to the theory. In addition to the component model, as explained earlier, the 
construction framework within a PECT contains a abstract component technology, that uses a 
construction language for specifying assemblies of components within the PECT. For a PECT 
based on ProCom, CCL could be used as a constructive language, but with certain 
adjustments. Behavioral part of the language could most probably remain the same, but the 
structural part of the language would have to be adjusted to the ProCom structural definitions, 
given that CCL is currently adapted to the Pin component model that differs from ProCom 
from a structural point of view. A more detailed analysis of the language adjustment is done 
in the next section where the strategy of adjusting CCL to ProCom is analyzed. 
 
 
Validation – PECT is validated against the defined goals 
 
Validation generally aims at showing that the designed PECT gives the expected results in 
term of predictions it makes on given assemblies. When considering empirical property 
theories (i.e. theories based on measurement) validation goal is stated in terms of the 
probability that a prediction will lie within some accuracy bounds, with some stated 
confidence level. Validating the accuracy of a prediction is analogous to validating a scientific 
theory. That is, behaviors are observed systematically under controlled circumstances, and 
this observed behavior is then compared to predicted behavior. The key word is systematic, 
since validation results should be, above all else, objective and hence repeatable. While 
collecting validation data it is important to have good laboratory techniques so that anomalies 
can be studied and results can be repeated. Validation data is finally analyzed which has a 
twofold purpose: first, to objectively and reliably describe the predictive powers of a PECT; 
second, to provide analysis data to support additional co-refinement, should normative goals 
fail to be satisfied [6] 
 
 
Packaging – if the PECT instance satisfies the goals it is packaged and delivered 
 
One objective is to ready the technology for deployment, including the development of 
installation support, documentation, and so forth. A second and more fundamental objective is 
to design automation support for the PECT to minimize the property-theory-specific expertise 
required by PECT users to make effective use of analysis models supported by the PECT. [6] 
 

5.2.2.  Adaptation of CCL to ProCom 

 
 
 Information that CCL specifications provide can be divided into three general groups:  

• structural information 

• behavioral information 

• analysis specific information. 
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The structural part of the component specification specifies how the component interacts with 
its environment. CCL structural elements correspond to the Pin component model, since CCL 
and the prototype PECT it belongs to were created for developing systems ultimately realized 
in Pin. Therefore in CCL the only way a component interacts with its environment is through 
its pins. There are no other ways of communication with the component. The structural 
specification defines for example the type of communication with the environment, type of 
data exchanged with the environment etc.  
 
This corresponds to ProCom where the components external, i.e. structural, interface consists 
only of ports which handle all communication with the component. All the functionality 
provided by the component is thus accessed through ports, which corresponds to the Pin 
model where pins handle the same kind of responsibilities. 
 
In Pin/CCL there are two types of pins: sink pins and source pins. The component receives 
stimulus for communication only through its sink pins and it initiates communication with the 
environment only through its source pins. Therefore primary classification of pins is done 
according to the direction of communication with the component, i.e. towards the component 
through sink pins, or from the component through source pins. 
ProCom uses the port concept for handling communication with the component which is 
analogous to a pin in CCL. Ports are also primarily classified by direction, thus there are input 
and output ports. Input ports of a component form the input port group and the output ports 
form the output port group.  
The sink pins of a Pin/CCL component correspond to the input port group on a ProCom 
component. The input port group is accordingly responsible for handling the communication 
coming towards the component. Analogously source pins of a Pin/CCL correspond to the 
output port group.  
 
The external structural differences between ProCom and CCL components can be resolved by 
adapting the CCL grammar to the specific details of the ProCom model. New language 
constructs, accustomed to ProCom, must replace the existing ones. It is primarily important to 
enable differentiation between data and trigger ports. For this purpose two new keywords 
must be introduced: data and trigger. A practical solution would be to require the usage of 
only the trigger keyword for trigger ports, whereas a port would be considered a data port by 
default. In this way the usage of the data keyword would be optional. For defining the 
direction of communication, two new keywords: in and out would be introduced. They are 
self-explanatory. Considering the semantics of ProCom ports, trigger ports would not receive 
any parameters, which would be required for data ports. 
Considering that ProCom doesn’t specify details on communication mechanisms between 
components, no adequate alternatives can be determined for the type of communication 
normally supported by CCL (synchronous or asynchronous). 
 
 

New ProCom CCL 

constructs 

Replaced CCL 

construct 

trigger in sink 

trigger out source 

data in (in) sink 

data out (out) source 
 

Table 5.1 Structural element changes in ProCom CCL 
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There is high compatibility between primary elements of functionality in components, i.e. 
reactions in CCL and services in ProCom. ProCom components are intended to implement 
small and low-level functionality therefore services within a ProCom component will not 
perform extensive and complex operations. There can be more than one service within a 
ProCom component therefore functionality of a ProCom component is completely made 
available to external users through a set of services. Each service can be triggered 
independently of the others and multiple services may run concurrently. Each service has a 
single input port group which contains exactly one trigger port and a set of data ports. Each 
service also has at least one output port group where the data produced by the service is made 
available. Allowing multiple output groups provides the possibility to produce outputs at 
different points in time. A service may also have attributes attached to it. 
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Figure 5.3 Relation of ports to services in ProCom components 
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Figure 5.4 Relation of pins to reactions in CCL components 
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A CCL reaction is highly compatible with a ProCom service. It is a unit of functionality 
within a CCL component. The relation between CCL pins and components reaction is similar 
to the relation between ProCom ports and services. There are certain differences regarding 
ways how a reaction or a service can be stimulated. Both ProCom services and CCL reactions 
are initially in a passive state. ProCom services are activated by a signal on their trigger port. 
They read the data on the data ports, perform the computation, set the resulting data on the 
output data ports and signal the receiving component through the output trigger port. 
Considering this behavior, it is clear that only stimulus that a ProCom service can receive 
from the outside is the initial stimulus which initiates execution of a service. All the 
computation that the service performs from then on can in no way be influenced by the 
component external environment. Therefore looking from the outside, a ProCom service only 
changes between two states: active and passive. Internally the service may go through 
multiple states depending on the nature of its calculations but this is not visible from the 
outside.  
 

 - service states visible from the environment 

(stimulation possible)

 - service states not visible from the environment 

(stimulation not possible)

Start

S1

S2

S3

 
 

Figure 5.5 External accessibility of ProCom service states 

 
 
 
Behavior of a ProCom service described above is somewhat different from the behavior of a 
CCL reaction. A CCL reaction is also started through the beginning of communication on one 
of the corresponding sink pins. The reaction may then, before it finishes its calculations, also 
go through a series of states. Main difference from ProCom is that the transitions between 
these states can be triggered by the component external environment. Therefore the 
components environment in CCL has a much larger influence on component behavior then in 
ProCom. This was described in the CCL section, where the details of the action language 
were discussed. Considering that CCL offers a broader set of possibilities than is required by 
ProCom, the behavioral part of CCL can be easily exploited for modeling the behavior of a 
ProCom component. The development environment and the compiler will ensure that only a 
subset of CCL is utilized which semantically corresponds to the nature of ProCom 
components and services. 
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Figure 5.6 External accessibility of CCL reaction states 

 
 
In CCL a reaction began when an event occurred at the sink pins. Two kinds of events are 
possible at each pin: start events and end events. Start events are those that begin interaction 
with a component, and end events are those that terminate interactions. Start events are 
formalized in CCL by the ^ operator, followed by the respective pin name, for example: ^toc 
means a start event on toc pin. End events are formalized in CCL by the $ operator, also 
followed by the respective pin name, for example: $tic represents an end event on tic pin. 
Considering that ProCom components do not support the level of communication supported 
by CCL, the $ operator will be discarded and only the ^ operator will be used to describe the 
activation of the trigger port (both input and output). 
 
Considering the limited accessibility of ProCom service states compared to CCL, it is obvious 
that the triggering abilities for firing transitions among states in a reaction, must be limited 
only to trigger ports and only for the initial transition from the passive to the active state. It 
must be possible only to begin the execution of a service through an input trigger port, and to 
activate the output trigger port once the service has stopped executing. This also means that 
triggering must be disabled for all states except the initial state. Since external triggering is 
therefore unable to be used for transitions between states, other CCL constructs may be used. 
The only remaining construct is a guard over some condition which can be tested to determine 
if a transition is eligible to fire. The CCL trigger keyword will therefore allowed to be used 
only for the transition from the passive state to the initial service state. This transition was 
done implicitly in CCL but in ProCom it might be done explicitly. Regarding the action part 
of the language, which defined what the component “can do” in a certain state or when a 
transition fires, all the internal component calculation functionality should remain the same 
except for the port communication options. Only communication action allowed in the 
ProCom-CCL would be the activation of the output trigger port. This activation will only be 
enabled in the final service state, after all the computations were completed and the data ports 
set. After the output trigger has been activated the service returns to the passive state.  
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ready

start

work

component ProComponent(){

trigger in trig_in();

data in dat_x(int x);

data in dat_y(int y);

trigger out trig_out();

data out dat_z(int z);

threaded react simpleWork (

trig_in,dat_x,dat_y,trig_out,dat_z) {

boolean gate = false;

state work{

dat_z = dat_x + dat_y;

gate = true;

}

start->ready{}

ready->work{

trigger trig_in;

}

work->ready{

guard gate==true;

action{

trigger trig_out;

gate = false;

}

}

}

}

component ProComponent()

trig_in

dat_x

dat_y

trig_out

dat_z

 
 

Figure 5.7 Example of a simple ProCom CCL behavior model 

 
 
 
 
 
 
 
 
 
 
 
 



50 

6. xUML – Executable UML 
 

6.1. Overview of UML and MDA 

 
 Modeling is a proven and a well-accepted engineering technique. Before building a 
software system for example there is a need of an overall architectural model of the system, as 
well as models describing other important aspects of the system, which will serve not only to 
the developers who will actually implement the system, but also for the client who are paying 
for the system etc. Essential about a model is that it shows what a system is supposed to do 
and not how it is supposed to be done. Therefore models usually do not contain many 
technical implementation details, they are concerned with the overall design. So models 
actually represent a simplification of reality. Models are also built because complex systems 
can’t usually be understood entirely from a single viewpoint. Therefore developing an 
appropriate model, or a set of models, for a system is highly important because it can 
influence how a problem is attacked and how the solution is shaped.  
 
Unified Modeling Language (UML) is a standardized specification language for object 
modeling of systems. It is a general-purpose modeling language that offers both a textual 
syntax and a (now nearly ubiquitous) graphical notation used to develop models of systems. 
UML was created by the OMG 1997. A UML model of a system is typically made up of 
several diagrams that are built using UML's graphical notation symbols. The language defines 
rules for combining symbols into diagrams. So what is essentially gained by creating different 
diagrams are multiple views on a system, each addressing a specific concern. Each model is a 
semantically closed abstraction of a system. A model is usually a combination of these 
diagrams. So UML is used in a very broad sense to visualize, specify and document software 
systems.  
 
To understand the conceptual model of the language it is necessary to understand three major 
language elements: the UML's basic building blocks, the rules that dictate how those building 
blocks may be put together, and some common mechanisms that apply throughout the UML. 
There are three kinds of building blocks: things (first-class abstractions in a model), 
relationships (way to tie things together) and diagrams (groupings of interesting collections of 
things).  
Things are further divided into: structural things (class, interface, collaboration, use-case, 
component, etc.), behavioral things (interaction, state-machine, etc.), grouping and 
annotational things.  
There are four kinds of relationships in UML: dependency, association, generalization and 
realization. A dependency is a semantic relationship between two model elements in which a 
change to one element (the independent one) may affect the semantics of the other element 
(the dependent one). An association is a structural relationship among classes that describes a 
set of links, a link being a connection among objects that are instances of the classes. 
Aggregation is a special kind of association, representing a structural relationship between a 
whole and its parts. A generalization is a specialization/generalization relationship in which 
the specialized element (the child) builds on the specification of the generalized element (the 
parent). A realization is a semantic relationship between classifiers, wherein one classifier 
specifies a contract that another classifier guarantees to carry out. [11] 
Most important language elements are of course diagrams. A diagram is the graphical 
presentation of a set of elements, usually in the form of a connected graph of vertices (things) 
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and paths (relationships). Diagrams are created to visualize (model) a system from different 
perspectives, so a diagram is a projection into a system. In theory, a diagram may contain any 
combination of things and relationships. In practice, however, only a small number of 
common combinations arise, which are consistent with the five most useful views that 
comprise the architecture of a software system. Therefore, UML offers thirteen kinds of 
diagrams: class diagram, object diagram, component diagram, composite structure diagram, 
use case diagram, sequence diagram, communication diagram, state diagram, activity 
diagram, deployment diagram, package diagram, timing diagram, interaction overview 
diagram. 
 
Only a brief description of some of the diagrams is given here, but considering that the focus 
of the thesis is on modeling the behavior, most important diagrams for this will be covered in 
much more detail in the next sections. UML component diagrams are not of interest here 
since they are only concerned with modeling the static structure view of a system. 
 
A class diagram shows a set of classes, interfaces, and collaborations and their relationships. 
These diagrams are the most common diagram found in modeling object-oriented systems. 
Class diagrams address the static design view of a system. An object diagram shows a set of 
objects and their relationships. Object diagrams represent static snapshots of instances of the 
things found in class diagrams. A component diagram is shows an encapsulated class and its 
interfaces, ports, and internal structure consisting of nested components and connectors. 
Component diagrams address the static design implementation view of a system. A state 
diagram shows a state machine, consisting of states, transitions, events, and activities. A state 
diagrams shows the dynamic view of an object. An activity diagram shows the structure of a 
process or other computation as the flow of control and data from step to step within the 
computation. Activity diagrams address the dynamic view of a system. 
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Figure 6.1 Class diagram and state machine diagram examples 

              
UML and xUML are the main supports of the Model-Driven Architecture (MDA) initiative 
announced by the Object Management Group (OMG) in early 2001, the purpose of which is 
to enable specification of systems using models. Model-driven architecture depends on the 
notion of a Platform-Independent Model (PIM), a model of a solution to a problem that does 
not rely on any implementation technologies. A PIM is independent of its platform(s). A PIM 



52 

can be built using an executable UML. Because an executable model is required as a way to 
specify PIMs completely that xUML is a solid foundation of model-driven architectures. 
MDA also defines the concept of a Platform-Specific Model (PSM): a model that contains 
within it the details of the implementation, enough that code can be generated from it. A PSM 
is produced by weaving together the application model and the platforms on which it relies. 
The PSM contains information about software structure, enough information, possibly, to be 
able to generate code. Executable UML views the PSM as an intermediate graphical form of 
the code that is dispensable in the case of complete code generation. [11] 
 
MDA, as defined by the OMG, essentially calls for the mapping of a Platform Independent 
Model (PIM) onto a Platform Specific Model (PSM). A PIM is a complete application 
specification that is independent of the technology platform upon which it will eventually 
execute. PIMs map onto PSMs, which provide the systems architecture infrastructure, or 
"plumbing," that implements the PIM on a specific technology platform, turning it into an 
executable application. One way to view this is to think of the PIM as source code for a 
solution, the mapping function as a compiler, and the PSM as an execution environment. The 
term Virtual Execution Environment (VEE) conveys a sense of the ultimate intent of the 
PSM. [13] 
 
OMG has started to provide standard PIM-to-PSM mappings for many of the popular 
technology platforms such as CORBA, J2EE, and .NET. Along with these mappings other 
OMG standards such as the Meta-Object Facility (MOF), XML Metadata Interchange (XMI), 
and the Common Warehouse Metamodel (CWM) work in concert to make the MDA a 
complete and robust approach to software development. The MOF provides a standard 
repository for UML models and defines a structure that allows a common meta-view of the 
stored UML models. XMI allows companies to exchange UML models as streams or files 
with a standard format based on XML. The CWM standardizes how to represent database 
models, schema transformation models, OLAP, and data mining models. [13] 
 
To become executable, the modeled application, or PIM, depends upon the architectural 
services of the PSM. The UML profile used to create the executable model places specific 
requirements upon the PSM. In other words, each UML element that is part of that profile 
must be somehow supported via the mapping into an element of the PSM that can be part of 
the execution environment. The mapping itself is typically referred to as model compiling and 
the mapping mechanism a model compiler. The main purpose of the model compiler is to 
translate each modeled element of the PSM into an element that can be executed within the 
architectural framework of the VEE. 
 
MDA is still however under considerable development.  
 
 

6.2. Overview of xUML - executable UML 

 
 The primary purpose for the development of xUML was the need for achieving a higher 
level of semantic precision when developing system models, which was not available in 
UML. So it was the mission of xUML to define the semantics of different subjects in 
sufficient detail so the created model of system behavior could be executed. Therefore xUML 
aims at a lower abstraction level then UML itself, but still a higher level when compared to 
object-oriented programming languages. It is not a programming language itself, i.e. it does 



53 

not aim at making any decisions on the code level. From the MDA point of view, xUML 
enables creating of Platform Independent Models (PIM’s).  
 
UML version 1.x was not executable because it was semantically incomplete and ambiguous. 
With the introduction of UML 2.0 in 2001. with action semantics, UML became executable. 
Action semantics provided a complete set of actions at a higher level of abstraction. This was 
added to UML through a Action Specific Language which defined in a precise way the action 
semantics of the language. Also many semantically weak elements from the version 1.0 of the 
language were remove. All of this resulted in the newly enabled executability of UML. xUML 
is a UML profile and is thus completely based on fundamental UML elements and its 
extensibility mechanisms. 
 
The xUML process is considered to be a rigorous object-oriented system development method 
which is based upon the principle of building a set of precise testable analysis models of the 
system to be developed, executing defined tests on these models and defining a systematic 
strategy by which the models will be used to produce code for the desired target system. [7] 
 
The xUML process embodies the following characteristics: 

• Precise, complete analysis models that can be tested using simulation. 

• Simple notations that can be understood by a wide audience 

• Clear separation of subject matters (system domains) 

• Useable analysis models without ambiguous interpretations 

• Implementation by translation in which the entire system can be automatically 
generated from the analysis models 

• Large-scale reuse 
 
An important benefit from introducing UML was the possibility to reduce subjectivity when 
designing a system, and introduce formal descriptions of what is expected of the system. Any 
decisions that are made during the development process can be aligned with the behavior that 
the system clearly exhibits, and whether this behavior meets the requirements. Another very 
important improvement was the possibility to detect many errors very early in the design 
process. This is important because the cost of correcting an error increases as the project 
advances.  
 
The history of software development is a history of raising the level of abstraction. As 
technology moved from one language to another, generally the level of abstraction at which 
the developer operates was increased, requiring the developer to learn a new higher-level 
language that may then be mapped into lower-level ones, from C++ to C to assembly code to 
machine code and the hardware. Knowledge of an application was then formalized in as high 
a level language as it could be. Over time, developers learned how to use this language and 
applied a set of conventions for its use. These conventions became formalized and a higher-
level language was born that was mapped automatically into the lower-level language. In turn, 
this next-higher-level language was perceived as low level, and a set of conventions for its use 
were developed. These newer conventions were then formalized and mapped into the next 
level down, and so on.  
 
xUML is at the next higher layer of abstraction comparing to the current state of software 
development techniques, abstracting away both specific programming languages and 
decisions about the organization of the software. Therefore a specification built in xUML can 
be deployed in various software environments without change. Physically, an xUML 
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specification comprises a set of models represented as diagrams that describe and define the 
conceptualization and behavior of the real or hypothetical world under study. The set of 
models, taken together, comprise a single specification that can be examined from several 
points of view. There are three fundamental projections on the specification, though any 
number of UML diagrams can be built to examine the specification in particular ways. [11] 
 
 

Concept Known as Modeled as Formalised using

all the things 

in the world
data

classes

attributes

associations

UML class diagram

lifecycles of 

things control

states

events

transitions

UML statechart 

diagram

what things do algorithm actions action language

 
 

Table 6.1 Concepts in an Executable UML Model [11] 

 
A typical first step would be to create a primary class diagram to clearly describe the subject 
matter at hand (system domain). Each object must be subjected to and conform to the well-
defined and explicitly stated rules or policies of the subject matter being analyzed, attributes 
must be abstractions of characteristics of things in the subject matter being analyzed, and that 
relationships similarly model associations in the subject matter.  
The objects (instances of the classes identified previously) may have lifecycles (behaviors 
over time) that are modeled as state machines. The state machines are defined for classes, and 
expressed using a UML state chart diagram. The behavior of the system is driven by objects 
moving from one stage in their lifecycles to another in response to events. When an object 
changes state, something must happen to make this new state be so. Each state machine has a 
set of procedures, one of which is executed when the object changes state, thus establishing 
the new state.  
Each procedure comprises a set of actions. Actions carry out the fundamental computation in 
the system, and each action is a primitive unit of computation, such as a data access, a 
selection, or a loop. The UML only recently defined semantics for actions, and it currently has 
no standard notation or syntax, though several near-conforming languages are available. 
These three models—the class model, the state machines for the classes, and the states' 
procedures—form a complete definition of the subject matter under study. [11] 
 
It is important to explain in more detail what “executable” in xUML really means. UML 
versions prior to version 2.0 were not executable and they provided for an extremely limited 
set of actions (sending a signal, creating an object, destroying an object, etc.). In 2001, the 
UML was extended by semantics for actions. The action semantics provides a complete set of 
actions at a high level of abstraction. For example, it became possible to write actions for 
manipulating collections of objects directly (avoided the need for explicit programming of 
loops and iterators). Another very important thing required for UML to become executable, 
are rules that define the dynamic semantics of the specification. Dynamically, each object is 
thought of as executing concurrently, asynchronously with respect to all others. Each object 
may be executing a procedure or waiting for something to happen to cause it to execute. 
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Sequence is defined for each object separately; there is no global time and any required 
synchronization between objects must be modeled explicitly. The existence of a defined 
dynamic semantics makes the three models computationally complete. A specification can 
therefore be executed, verified, and translated into implementation using a model compiler. 
[11] 
 

6.3. Transforming xUML – model compilers 

 
 The most important aspect xUML is the possibility to execute UML models. As explained 
earlier, xUML raised the level of abstraction when compared to today’s programming 
languages such as Java. Unlike Java, it offers a new development technique, which abstracts 
much of the technical details, by creating a set of models of a system being developed. All 
these models together form a semantically consistent and functional whole which can, using a 
adequate compiler, be transformed to the next lower level and thus made executable. 
Therefore it is safe to argue that xUML is another (graphical) programming language. Since a 
xUML model completely specifies the semantics of a certain system domain, it really in a 
way becomes a program of that system domain. But much less details are required to be 
defined when compared to a lower language. In fact, xUML models deal exclusively with the 
“objects” of the system domain, and completely abstract the technical details such as: classes 
and objects, distribution of programs into threads, storage of data etc. All this issues are 
considered related to specific software and hardware platforms. The way these technical 
decisions are abstracted away in xUML can be compared to the way register and heap issues 
are abstracted from today’s programming languages such as Java. So in the same way modern 
language compiler would make decisions about register allocation on its own, so would a 
xUML compiler make decisions concerning a particular hardware and software environment 
and making decisions such as whether or not to use a distributed Internet model, to use 
separate threads for each user window etc.  
 
An executable UML model compiler turns an executable UML model into an implementation 
using a set of decisions about the target hardware and software environment. There are many 
possible executable UML model compilers for different system architectures. Each 
architecture makes its own decisions about the organization of hardware and software, 
including even the programming language. Each model compiler can compile any executable 
UML model into an implementation. A single model compiler may employ several languages 
or approaches to problems such as persistence and multi-tasking. Then, however, the several 
approaches must be shown to fit together into a single, coherent whole. 
 
Examples of possible model compilers: [11] 

• Multi-tasking C++ optimized for embedded systems, targeting Windows, Solaris, and 
various real-time operating systems.  

• Multi-processing C++ with transaction safety and rollback.  

• Fault-tolerant, multi-processing C++ with persistence supporting three processor types 
and two operating systems. 

• C straight on to an embedded system, with no operating system.  

• C++, widely distributed discrete-event simulation, Windows, and UNIX. 

• Java byte code for single-tasking Java with EJB session beans and XML interfaces. 

• Handel-C and C++ for system-level hardware/software development. 

• A directly executing executable UML virtual machine. 
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A system developer would then build a xUML model that captures his solution for the system 
domain under study, acquire a model compiler that meets the performance properties and 
system characteristics he requires, and give directives to the compiler for the particular 
application. In practice it is not yet this simple. Specific performance requirements would 
sometimes have to be looked out for. One particularly performance-sensitive feature is static 
allocation to tasks and processors. For example allocating two classes that communicate 
heavily with different processors could cause significant degradation of network and system 
performances. In such a scenario it would simply be required to re-allocate the elements of the 
model and recompile. This is where xUML demonstrates its power because by separating the 
model of the subject matter from its software structure, the two aspects can be changed 
independently, making it easier to modify one without adversely affecting the other. This 
extends the Java notion of the "write once, run anywhere" concept because as the level of 
abstraction is raised, the programs become more portable.  
 

6.4. Overview of system development in xUML 

 
 When building an xUML model of a system, specific models are built for each domain 
(subject matter) in the system. It is therefore important to understand what domains actually 
are as well as to identify them in a system that’s being developed. Similar to usual system 
development, requirements are gathered for the system and use cases are built from them. 
Requirement gathering and domain identification are two concurrent processes. Requirements 
are placed in corresponding domains according to their vocabularies. Typically the 
requirement gathering and domain identification are not completely separated but rather 
intertwined.  
A domain is a autonomous world inhabited by conceptual entities. Important to emphasize is 
that conceptual entities in one domain require the existence of other conceptual entities in the 
same domain but not in other domains. Each domain, except for the overall application, 
provides services to other domains. Relationships between domains are given through a 
domain chart. The domain chart provides the highest-level view of the system.  
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Figure 6.2  xUML domain chart example 

 
Each package symbol on the domain chart represents a domain, and the dotted lines are 
domain dependencies. The example domain chart shows an online bookstore with a web GUI. 
The bookstore has no knowledge of the concepts within the web GUI, so it could be replaced 
by any other user interface. The functional or behavioral requirements on the system can be 
expressed textually or more formally in terms of use cases. Systems respond to requests from 
actors, and each collection of responses, an interaction, is a use case. Each use case is a set of 
behavioral requirements placed on the system by the role played by the actor. The vocabulary 
used in the expression of the use case should match the vocabulary of the associated domain. 
Hence, the use case "Select a book to purchase from a pull-down menu" would be acceptable 
if "book" and "pull-down menu" were both concepts in the same domain. [11] 
 
After the domains have been identified and the overall requirements defined, it is possible to 
make detailed decision about the behavior of individual domains. To do this successfully, the 
developer must have a complete understanding of the domain being modeled. The xUML 
model for each domain will contain several different complementary diagrams such as class 
diagram, state diagrams etc.  
 
Since a domain is usually full of different, important and unimportant, concepts, it is crucial 
to extract the ones that are important for the system being modeled, i.e. that correspond to the 
purpose of the domain. Result of this primary abstraction process is a class diagram 
containing classes, attributes, associations etc.  
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Figure 6.3 Example xUML class diagram 

 
 
When the structure of the domain has been described using the class diagram, it is important 
to also create a very good description of domain behavior, i.e. behavior of its elements. All 
the things in the domain go through various lifecycles, i.e. a collection of stages or states. A 
state machine is a formalization of a life cycle. Concepts such as states, events, transitions and 
procedures are used to describe a life cycle of a thing through a state chart. Like things have a 
common lifecycle, so when a group of like things is abstracted as a class, the common 
lifecycle is abstracted as the object's state machine.  
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deliveryConfirmed

Class State Machine

preparing 

Shipment

Waiting for 

Pickup

In transit to 

customer

Delivered
 

 
Figure 6.4 Example of a xUML state machine for a class of things [11] 

 
The state machine is represented using a subset of the state chart diagram. This subset is 
chosen to be rich enough to model the lifecycles of the abstractions, in contrast to the more 
complex state chart diagrams required for modeling software structure. The subset is also 
chosen to be sparse enough to ease model compilation: A complex language requires more 
complex model compilers. [11] 
 
Each state on the state chart diagram has an associated procedure that takes as input the data 
items associated with the event that triggered entry into the state. Each procedure comprises a 
set of actions, and each action carries out some functional computation, data access, signal 
generation and the like. Actions are like code, except at a higher level of abstraction, making 
no assumptions about software structure or implementation. UML has a definition of the 
semantics of actions, but it does not yet have a notation for action models. [11] 
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1. Preparing shipment

relate self to rcvd_evt.order across R6;

self.recipient = rcvd_evt.order.recipient;

self.deliveryAddress=rcvd_evt.order.deliveryAddress;

//notify clerk to pack the order

generate shipmentReadyToPack(

shipmentID:self.shipmentID) to EE_ShippingClerk;

requestShipment(order)

self.timePrepared=TIM::current_date();

self.trackingNumber =rcvd_evt.trackingNumber;

//notify the company to pick up the shipment

generate shipmentReadyForPickup to 

EE_ShippingCompany;

2. Waiting for pickup

packed(trackingNumber)

self.timePickedUp = TIM::current_date();

pickedUp

3. In transit to customer

self.timeDelivered = rcvd_evt.timeDelivered;

select one order related by self->Order[R6];

generate Order7:orderDelivered to order;

4. Delivered

deliveryConfirmed (timeDelivered)

 
 

Figure 6.5 Example of a xUML state chart diagram with executable actions [11] 

 
After adequate models have been built, the overall system model may be verified and 
compiled. Typically all the models and diagrams will not be perfectly done right away. It will 
be necessary to reiterate the modeling process and to reevaluate how the concepts were 
gathered in the class diagram, how the behavior was captured in the state chart diagram etc. 
An important rule is that classes should be kept as simple as possible. Altogether the entire 
development process will likely take multiple iterations before the final version, but this all 
depends on the complexity of the system being developed, experience of the developer, 
quality of available development tools, etc. 
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7. Applying xUML to ProCom 
 

7.1. General applicability of xUML in ProCom behavior 
 modeling 

 
 It is clear from the examples in the previous sections that xUML modeling serves 
primarily for creating highly abstract system models, without any technical detail regarding 
hardware and software platform. In that respect, xUML offers a higher abstraction then for 
example Java which is a purely object-oriented language. The xUML language can therefore, 
in its complete form, be used for developing highly complex systems, i.e. systems that can be 
primarily decomposed into a domain chart and where domains can further be detailed through 
the class diagram, state chart diagram, collaboration diagram etc. Any possible reuse would 
have to be realized at the level of the model compiler in the form of reusing technical 
implementations, since at this point it is difficult to assume how the reuse concept, which is 
fundamental to CBD, could be applied systematically and generically at the system and 
domain level.  
 
Regardless of the reuse principle, primary objective here is to establish the applicability of 
xUML for modeling the behavior of an individual component. It has been clearly stated in 
ProCom that components provide small and compact service, i.e. functional units. It has also 
been said that component implementations will most likely be supplied in the form of source 
code (probably C). Therefore it is safe to assume that the functionality provided by the 
component will in itself be mostly of algorithmic nature and will not require object modeling. 
Another important argument that supports this conclusion is the simple difference in resource 
consumption of object-oriented programs in languages such as Java when compared to 
programs in lower level procedural languages such as C. It then follows that the functionality 
of a single component will not have a structure decomposable into domains and furthermore 
describable through class diagrams. Taking into account the algorithmic nature of a typical 
component service, only element that could probably be utilized for component behavior 
modeling are the state-chart diagrams and corresponding action languages. There are action 
languages that can be considered for behavior modeling, however their application in the 
component context, falls out of the xUML development process and must therefore be 
considered separately from that process.  
 
As mentioned in the previous section, UML has a definition of the semantics of actions, but it 
does not yet have a notation for action models. However several action languages exist that 
are compliant with UML action semantics, such as:  
 

• BridgePoint®  Object Action Language 

• SMALL - Shlaer-Mellor Action Language 

• TALL - That Action Language 
 
Because of the very simple nature of the functionality realized by a typical component, a 
small subset of these languages would typically be required to realize it. Most of the object-
oriented functionality is discarded because it is not applicable. Therefore in the next section 
only the essential elements of the Object Action Language are analyzed and an attempt is 
made to provide a relation to the ProCom component model. 
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7.2. Application of Object Action Language in ProCom 
 behavior modeling 

 
 The Object Action Language (OAL) is an action language that realizes the action 
semantics specification for UML as of version 1.5. The OAL is used to define the semantics 
for the processing that occurs in an action in a state chart diagram of a xUML model. 
 
An OAL action can perform five possible processes which are [12]: 
 

• data access 

• event generation 

• test 

• transformation 

• bridge and function 
 
These processes are supported through [12]: 
 

• control logic,  

• access to data described by the class diagram,  

• access to data from events which initiate actions,  

• ability to generate event 

• access to timers and current date and time 
 
In a UML model there is no concept of a "main" function or routine where execution starts. 
The models are executed as interacting finite state machines executing concurrently. Any state 
machine, upon receipt of an event (from another state machine or from outside the system) 
may respond by changing state. On entry to the new state, a block of processing (an "action") 
is performed. This processing can in principle execute at the same time as processing 
associated with another state machine. Concrete details regarding the relation of concurrency 
and execution of different state machines depend on the nature of the software and hardware 
architectures used to implement the system.  
 
The execution rules in OAL are as follows: 
 

1. Execution commences at the first statement in the action and proceeds sequentially 
through the succeeding lines as directed by any control logic structures 

2. Execution of the action terminates when the last statement is completed 
 
As explained in the previous section, the functionality of a single component will not have a 
structure decomposable into domains and furthermore describable through class diagrams. 
Therefore all the OAL constructs related to class manipulation and relationship management 
between classes and instances can be discarded when considering an OAL subset for 
component behavior modeling. Discarded language constructs will not be mentioned in 
details but only a list of the overall discarded functionality is provided. 
 
Discarded functionality related to class manipulation and relationship management: instance 
creation, instance selection, writing attributes and reading attributes, instance deletion, 
creating relationship instances, deleting relationship instances, creating event instances, 
instance selection through relationship navigation, operations, bridges and functions.  
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Language constructs that remain in the language are: control logic, event generation, event 
data access, unary operators, date and time operators, timers and arithmetical, logical and 
string operators.  
 
Language control logic enables the use of standard constructs such as: if, else, for, while, 
break and continue. They will not be analyzed in further detail. 
 
The OAL expression of an action has access to and can produce certain data items. The 
following data items are available to be read at the start of and throughout an action: 
constants, values of attributes of classes (this is discarded and thus not available but 
mentioned for the sake of completeness), supplemental data items carried by the event that 
initiated the action and local variables (created by statements within the action). These data 
items can be produced during an action: local variables, values of attributes of classes, 
supplemental data items to be carried by an event generated during the action 
 

integer

real

boolean

string

date

timestamp

unique ID

instance handle

inst. handle set

timer handle

event instance

state
 

 
Table 7.1 OAL data types [12] 

 
 
Considering all the constructs regarding class and relationship manipulation were discarded, 
variables will only be able to have the fundamental types from the figure above, but not these 
types: instance handle, instance handle set, unique ID and event instance. 
 
The scope of a variable is defined as the block of code in which the variable may be accessed. 
A block of code can be the entire OAL for the given action, or it may be a <statements> block 
within a control logic structure. Each control logic structure contains at least one new scope. 
All variables that were accessible in the scope containing the structure are also accessible in 
the block or blocks contained by the structure, essentially causing the contained scopes to 
inherit variables from the parent scope. Any variables declared within a given control logic 
block fall out of scope when execution exits the block. Control logic structures may contain 
multiple scopes, either by repeated nesting of new structures or by using the elif or else 
constructs in an if structure. When nesting of control logic is used, each new structure defines 
a new scope. In an if statement, each elif or else structure contained within the if block defines 
a new scope, and each new scope inherits the scope of the block containing the if statement. 
[12] 
 
An important language construct that remained in the language is the possibility to generate 
events. In the ProCom context, an event will happen when a component service has finished 
its calculations, has set the output data ports to the calculated values and has activated the 
output trigger port and thus notifying the next component about the data. In contrast to this, 
the initial process when a component is triggered through its input port is not considered an 
event here. It is assumed that the component will implicitly receive the values at the input 
data ports through its local variables and that this variable initialization will be performed 
automatically by the executing framework. 
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Final important element to mention is the overall position and usage of a OAL state chart in 
the component modeling context. When developing xUML systems models, it is necessarily 
done in a visual development environment where graphical notation of UML is used 
extensively because writing textual description of models would be counter-productive and 
would be in contrary to the visual appeal of UML. Therefore, when considering creating a 
OAL state chart that describes behavior of a component it would be necessary to use a visual 
modeling tool for several reasons. When modeling class behavior, it is considered that the 
domain changes its state when a method is called on an object instance. Signature (name and 
arguments) of this method determine the next state of the state chart describing the behavior 
of this object (class). Thus, a model compiler will implicitly establish the connections 
between states in the state-chart and there is no need for the developer to formalize the 
transitions between states. Therefore, a visual modeling tool would be necessary to use, or 
syntax to formalize the transitions must be developed.  
 
 

ready

start

work

component ProComponent()

trig_in

dat_x

dat_y

trig_out

dat_z

ready

work

integer dat_z;

dat_z = rcvd_evt.dat_x + rcvd_evt.dat_y;

generate trigger_event(dat_z) to ProCom_component_1;

rcvd_evt

 
 
 

Figure 7.1 Example of a theoretical state chart for a ProCom component 
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8. Language summary 
 

8.1. EP 

 
 EP is a declarative language for describing the behavior of platform-independent models 
(PIMs). EP is based on a hybrid notation that uses graphical elements as well as textual 
elements in the form of OCL code snippets. Compared to existing action languages it is more 
abstract. Much of the operation dynamics can be expressed using EPs graphical notation. EP 
differs from other OCL-based languages that enable the specification of only pre- and post-
conditions, because it enables the development of an executable description of the dynamic 
behavior of the system which enables complete code generation. EP describes the dynamic 
behavior of a system by using events and properties from the class diagram. [16] 
 
 

UI

UserScreen

addFlight

from:String

to:String

Main

userScreen_addFlight

from:String

to:String

FlightStore

addFlight

newFlight:Flight

userScreen flightStore

 
 

 
Figure 8.1 Example of a EP behavior model 

 
 

8.2. ASL 

 
 ASL is an implementation independent language for specifying processing within the 
context of an Executable UML (xUML) model. ASL is compatible with the UMLs “Precise 
Action Semantics” extension. The purpose of the language is to provide an unambiguous, 
concise and readable definition of the processing to be carried out by an object-oriented 
system. ASL is a language providing: sequential logic, access to the data described by the 
class diagram, access to the data supplied by signals initiating actions, the ability to generate 
signals, access to timers, access to synchronous operations provided by classes and objects, 
access to operations provided by other domains, tests and transformations, etc. [17] 
 
Unlike conventional languages, there is no concept of a main function or procedure where 
execution starts. ASL is executed in the context of a number of interacting state machines, all 
of which are considered to be executing concurrently. Any state machine, after receiving a 
signal (from another state machine or from outside the system) may respond by changing 
state. On entry to the new state, a block of processing is performed. This processing can, in 
principle execute at the same time as processing associated with another state machine. [17] 
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8.3. JUMBALA 

 
 Jumbala is an action language developed for the needs of an industrial project called 
SMUML (Symbolic Methods for UML Behavioral Diagrams) at the Laboratory for 
Theoretical Computer Science in Helsinki University of Technology, whose goal is to 
formally analyze behavioral aspects of reactive computer systems modeled in UML. The aim 
of the project is to build a prototype tool set for analyzing the behavior of industrial UML 
models using state-of-the-art symbolic model checking techniques. 
 
The design of Jumbala as an UML action language conforms to the general requirements 
placed by the UML framework. Jumbala also conforms to the requirements made by 
SMUML. The key design principle has been to make Jumbala resemble the Java 
programming language. Most of the elements in Jumbala are taken directly from Java. 
Jumbala is roughly a subset of Java.[19] 
 

8.4. Scrall 

 
 Scrall is an action language at the semantic level of relational action languages such as 
SMALL, TALL, OAL and ASL. All of these languages are platform independent. Scrall was 
primarily inspired by SMALL and exceed it in size. Scrall is primarily a graphical language. 
Symbols are networked together with object, data and control flows. Scrall is fully compatible 
with UML 2.0 action semantics. Scrall symbols are only about 10% consistent with standard 
UML graphics standards 
 
 

8.5. TASM - Timed Abstract State Machine specification 
 language 

 
 TASM is a behavior modeling language based on state charts that claims to successfully 
integrate functional and extra-functional properties on a system. The extra-functional 
requirements that TASM deals with are timing behavior and resource consumption. TASM is 
essentially an action language because its specifications are executable and the language has a 
defined execution and composition semantics.  
 
It is based on the theory of abstract state machines. The abstract state machine formalism 
revolves around the concepts of an abstract machine and an abstract state. System behavior is 
specified as the computing steps of the abstract machine. A computing step is defined as a set 
of parallel updates made to global state. A state is defined as the values of all variables at a 
specific instant. A machine executes a step by yielding a set of state updates. A run, 
potentially infinite, is a sequence of steps. A basic abstract state machine specification is 
made up of two parts - an abstract state machine and an environment. The machine executes 
based on values in the environment and modifies values in the environment. [18] 
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9. Conclusion 
 
 CCL and PACC have proven to be very successful methods for developing predictable 
component-based software systems. The adapted action language (CCL) implemented in the 
Starter Kit has proven very well designed for its purpose, i.e. describing component-based 
systems and enabling their prediction and certification. An important fact is that all the PECT 
concepts have been successfully implemented and demonstrated in the case study with ABB. 
The PECT approach is thus highly promising for CBD.  
 
Taking this into consideration, CCL has proven to be most convenient for modeling ProCom 
component behavior, since reasonable compatibility was determined between ProCom and the 
Pin component model utilized in the PECT that has been implemented in the Starter Kit. 
Therefore a language highly similar to CCL may be used in the future ProCom IDE, and its 
structure can be obtained from the CCL structure through a simple adaptation procedure. An 
attempt of such an adaptation is given in Appendix A but its validity remains to be proven, 
considering that none of the other structural elements were compared, such as assemblies and 
environments.  
 
The alternative strategy, of developing a ProCom PECT has not been extensively analyzed 
but no obvious and significant problems have been identified that would disable the 
development of such an implementation. 
 
Application of a typical xUML language was not concluded as feasible for the purpose of 
modeling component behavior. Reasons for this are high incompatibilities between the target 
domain areas, because xUML typically aims at modeling various object oriented systems that 
do not fall into the target domain of ProCom. Given the nature of xUML, and the fact that it is 
unreasonable to expect that a single language would give the solution to all software 
problems, a typical xUML development process is not feasible for this purpose. However one 
possible solution could be the utilization of the action (state chart) languages that are used in 
xUML for describing behavior of classes. Considerable adaptations must be done on such 
languages to increase their usability in the CBD area. Such adaptations to action languages 
would then inherently lead to a language very similar to CCL. CCL would therefore serve as a 
better starting point for the development of a ProCom modeling language then xUML action 
languages. 
 
Only a few modeling languages were shortly summarized, considering that most of them fall 
into the xUML family and thus all the above conclusions apply to them as well. 
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Abstract 
 

Software development today is faced with responding to huge challenges because of the 
increasing requirements on software systems in all domains, from the smallest embedded 
system, desktop and business software to large scale industrial systems. An approach to 
software system development that is based on the reusability principle and offers solutions to 
many crucial problems is component-based software engineering (CBSE) where systems are 
built by composing independent, tested and trusted software components.  
 
Considering that the component is the fundamental building block of software systems in 
component-based development (CBD), it is reasonable to investigate and consider methods 
for modeling components functionality, i.e. the services it provides since modeling has today 
become a mainstream engineering technique. ProCom is a component model intended to be 
used for development of embedded systems that are both resource limited and control 
intensive. 
 
This thesis analyzes Construction and composition language (CCL), a successful modeling 
language adapted to CBSE, and Executable UML (xUML) which represents a large family of 
modeling languages based on UML. Possibilities of applying these languages to modeling the 
behavior of ProCom component are analyzed and a model is provided for such applications. 
 
 

Sažetak 
 
Razvoj programskih sustava se danas nalazi pred velikim izazovima jer mora odgovoriti na 
rastuće zahtjeve koji se postavljaju na takve sustave u svim područjima primjene, od 
najmanjih ugradbenih sustava, kućnih i poslovnih aplikacija do velikih industrijskih sustava. 
Programsko inženjerstvo temeljeno na komponentama je pristup razvoju programskih sustava 
temeljen na konceptu ponovnog korištenja implementirane funkcionalnosti, gdje se sustavi 
grade kao kompozicije nezavisnih, isprobanih i vjerodostojnih programskih komponenti. 
 
Obzirom na važnost komponente kao osnovnog gradivnog elementa takvih sustava, važno je 
istražiti metode modeliranja funkcionalnosti koje komponenta ostvaruje, tj. usluge koje pruža 
okolini. ProCom je komponenti model čija je svrha primarno omogućiti razvoj ugradbenih 
sustava s ograničenim resursima i intenzivnim upravljačkim svojstvima. 
 
U ovom radu analizirani su Konstrukcijski i kompozicijski jezik (CCL), uspješni jezik za 
modeliranje, prilagođen CBSE procesu, te Izvršivi UML (xUML) koji predstavlja široku 
obitelj akcijskih jezika za modeliranje temeljenih na UML-u. Analizirane su mogućnosti 
primjene tih jezika za modeliranje ponašanja ProCom komponenti te je predložen model za 
ostvarenje takve primjene. 
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Appendix A: Adapted CCL grammar for ProCom            
                       behavior modeling 
 
Note: only component part of the grammar is given (syntax for assemblies and environments 

is excluded). 

 
Start : cclSpec 
 
cclSpec:  
 topLevelUnit*  
 
topLevelUnit:  
 simpleUnit | constructiveUnit 
   
constructiveUnit:  
 assemblyDecl | componentDecl | environmentDecl 
 
componentDecl:  
 component ID ( [formalParam (, formalParam)*] ) { comPart* } 
 
formalParam: [ const ] typeSpecifier [ & ] ID 
 
comPart:  
 annotation 
 | declaration 
 | triggerPortSpec 
 | dataPortSpec 
 | reaction 
 | verbatim 
 
triggerPortSpec:   
 trigger (in | out) ID ( [portParam (,portParam)* ] ) ; 
   
dataPortSpec:  
 data (in | out) ID ([portParam (,portParam)* ]) ; 
 
reaction: 
 [threaded] react ID (pinXRef ) { reactStm* }  
     
pinXref:  
 { ID (, ID)* } 
   
reactStm:  
 declaration 
 | stateSpec  
 | transitionSpec  
 
stateSpec:  
  state ID  { action* } 
 
action:  
 verbatimLit 
 | assignmentExpression ; 
 | returnStatement ; 
 | iteration 
 | ifThenElse 
 | alert ( conditionalExpression , conditionalExpression ) ; 
       | { action action* } 
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iteration:  
 whileIteration 
 | forIteration 
 | doWhileIteration 
 
whileIteration:  
        while ( conditionalExpression ) action 
    
forIteration:  
        for (  
         [ assignmentExpression ] ;  
         [ assignmentExpression ] ;  
         [ assignmentExpression ] ) action 
 
doWhileIteration:  
        do action while ( conditionalExpression ) ; 
    
returnStatement:  
        return [ assignmentExpression ]  
    
ifThenElse:  
 if ( conditionalExpression ) action [ else action ] 
     
transitionSpec:  
 transitionHead -> ID { [event] [guard] [action] } 
 
transitionHead: 
 start | ID 
   
event:  
 | trigger eventTrigger ; 
 | trigger timeTrigger ; 
   
eventTrigger:  
 unaryExpression Note: ID of a trigger port 
   
timeTrigger:  
after ( additiveExpression ) 
   
guard:  
 guard conditionalExpression ;  
  
assignmentExpression: 
 conditionalExpression 
 | unaryExpression = assignmentExpression 
 
conditionalExpression: 
 equalityExpression 
 | conditionalExpression || equalityExpression 
 | conditionalExpression && equalityExpression 
   
constantExpression: conditionalExpression 
 
equalityExpression: 
 relationalExpression 
 | equalityExpression == relationalExpression 
 | equalityExpression != relationalExpression 
  
relationalExpression: 
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 additiveExpression 
 | relationalExpression < additiveExpression 
 | relationalExpression <= additiveExpression 
 | relationalExpression > additiveExpression 
 | relationalExpression >= additiveExpression 
 
additiveExpression: 
 multiplicativeExpression 
 | additiveExpression + multiplicativeExpression 
 | additiveExpression - multiplicativeExpression 
   
multiplicativeExpression: 
 castExpression  
 | multiplicativeExpression * castExpression   
 | multiplicativeExpression / castExpression 
 | multiplicativeExpression % castExpression 
 
castExpression: 
 unaryExpression 
 | ( typeIdentifier ) castExpression 
 
typeIdentifier:  
 int | float | boolean 
   
unaryExpression: 
 postfixExpression 
 | ^ unaryExpression 
 | $ unaryExpression 
 | ++ unaryExpression 
 | -- unaryExpression 
 | + unaryExpression  
 | - unaryExpression  
 | !  unaryExpression  
 
postfixExpression: 
 primaryExpression 
 | postfixExpression [ additiveExpression ]  
 | postfixExpression ([conditionalExpresssion (, conditioalExpression)*]) 
 | postfixExpression ++ 
 | postfixExpression -- 
 
primaryExpression: 
 scopedId 
 | literalValue  
 | ( assignmentExpression ) 
 
literalValue:  
 INT_LIT  
 | FLOAT_LIT   
 | STRING_LIT 
 | true  
 | false 
 

 
 


