EESTEC-ZG Workshop

Lecture 4:
Intreductionito HW/SW Coe:Design using the NISC Technology.

Daniel Gajski, Vlado Sruk, Roko Grubisi¢

University of Zagreb

Faculty of Electrical Engineering and Computing
EPviado.sruk@rferhr

Lecture overview

Recap
UKE project
HW/SW Co-Design

Norlnstruction Set. Computer

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Unity Through Knowledge Eund

Project: “Application-Oriented Embedded System
liechnology”

Pricipallinvestigator: Prof. Daniel Gajski
a University off Californial lrvine
a Center off Embedded Computer. Systems

WWW.UKTRF

UNITYTHROUGH
KNOWLEDGEFUND

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

ihe complexity ofiembedded systems

Embedded systems are nolonger used as simple control
devices
Complex tasks and algorithms and high performance
requirements require complex hardware platforms

= Multiprocessor: System-0On-Chip (MPSoC)

m System on Programmable Chips (SePC)

Heterogeneous multiprocessor systems
s General purpose Processors

a Application specific cCoprocessors

m Bus architectures

Complex software
Complex hardware/software interface

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Constraints

The need for rapididevelopment ofiembedded systems
m Short time-te-market (T1ivVl)

a Reliabjility?

Stringent constraints

= Speed

m Area

= Power

There s an evident need for new approaches: to the
design ol embedded systems

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

HW/SW Co-Design

Hardware/software co-design means meeting system-
levellobjectives by exploiting the synergismi of hardware
and software through their concurrent design

Unlike traditionall design approaches, co-design| vViews
the process ofideveloping hardware and software as a

whole

llasks (parts off anjalgorithm) can migrate between
software and hardware

We evaluate the benefits and draw-backs of software
and hardware implementations of'a particular function

Automatic generation of hardware?

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

/'fferent implementations of anialgoerithm

Software implementation
= Programming

m Higher designer productivity
m Shorter lime loi lViarket

s Lower performance

Hardware implementation
= RIL modeling

m Lower designer productivity
m Longer lime lolVlarket

m Higher performance

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

The ideal system?

We're looking for an optimal system to performa
given task

What Is optimal’depends on the constraints

Design Space Exploration

n [ryto determine whichipart of the system's task
shouldi be implemented in hardware and whichiin
seftware

Tihe key for enhancing the performance Is
migrating the right part of'an algorithm to
hardware

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

System design

Generall purpose processors

Application SPECIfic COpProCEeSSorSs
s Automatic generation

System integration
a Standard bus architectures?

(

Coprocessor

~

J

Coprocessor

~\

J

Coprocessor

v

M
M
M

J

\y

A general purpose

\

Main processor

Processor

Z

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Automatic generation of hardware

Raising the level of'abstraction

a Synthesize hardware from: a’high:level description
and not from a RIL description

n High:-Level Synthesis (FHLS)

n C-to-hardware tools

Expanding existing processors with custom
instructions

s Application-Specific Instruction set Processors (ASIPS)

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Design productivity

=
=
e
O
-
©
o
a

Design Quality

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

EIISC — No Instruction Set Computer

A novel concept developed: by Prof. Daniel D. Gajski'and
his team at University of' California at lrvine (UCI)

Tihe idea is to provide automatic generation of custom
processors (IPs) from high:=level description while
retaining the ability' terpredictably contrelithe quality of;
the finalioutcome

The main characteristic of the NISC approachiis the

elimination of the instruction abstraction

The high:=level programming language code isicomplied
directly'to a datapath

Horizontally microprogrammed controel tnit

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

CISC Vs. RISC Vs.

CISC NISC

Complex instructions possible Simple instructions Mo instruction. only control words

1 Instruction = n micrainstructions Mo microprogramming MISC PM = RISC PM
RISC PM = 2X CISC PM

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Styles

NISC RTL Processor FSM

Mo instruction, only control words PM is implemented with gates Mo Datapath. no Data memaory

PC is equal to SR (State register) Simple controller
Datapath is simple

EESTEC Workshop - May,26-30, 2008
University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC methodology

Write an application in C

Select aiNISC architecture (manually or
autematically)

Compile C for the selected architecture
Simulate/debug/evaluate the result

Repeat 1-4 i not satisfactory
Generate RIL for EPGA/ASIC

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Iechnology TooISet (CAo-RTL)

Datapath Generator. / Selector

m Generates/Selects datapath for a given application

s Converts C=> GNR (Generic Netlist Representation ofi datapath)
NISC; Cycle-accurate Compiler:

s Compiles the application for a given datapath

s Converts C=> CW/(Control Words streamj|controelling components in each
clock cycle)

RIL Generator.

= Generates the RTL for input to FPGA or. ASIC
s Converts GNR+CW => RTL

Datapathi Refinement
= Refine datapath to improve quality

Code Refinement
= Refine application to improve quality

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Datapath Generator
(C=>GNR)

NISC Compiler
(C+GNR = FSM)

RTL Generator
(GNR+FSM = RTL)

Code BT Datapath
Refinement : . = Refinement

- Synthesis Backend |

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

ANIL-hased
Architecture
Description
Language
(ADL)

- =Miscarchitecture type="simplelp"s
- <Ports>
=Clock clk" bitwidth=
<InPart
<InPart
< OutPort
<0OutPort
<OutPort n='
<OutPort n="dm_writeEn" bitWidth="1" />
</Ports»
- <Netlist>
- <Components >

SetParam
<SetParam
cfInstance »

=<Instance n
<Instance n
=Instance n:

amponents
Connections >

dest="RF" dPort="w0" />
dest="comp" dPort=
e

em" sPort="dm_addr" dest="" dPort="dm_addr" />

em" sPort="dm_w" dest="" dPort="dm_w" />

em” sPort="dm_readEn" dest="" dPort="dm_readEn" />
mem” sPort="dm_writeEn" dest="" dPort="dm_writeEn" />

<Conn alu” dPort="ctrl" £="10" e="10" />
< /Connections >
< Methst>
= «<Compiler-aspect defaultIntegralRF="RF" defautDMem="mem">
= <CwiFields n="cwField
ld n="constD

el /=

< /CwFields>
‘z.f':c.rnp iler-aspect>
carchitectura »

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Technology Design Flow

In NISCi Technology, the designer can iteratively refine to get
satisfactory results.

Architecture selection:

= |t can be selected from a set of pre-designed templates optimized fora
specific application domain.

s A customized architecture can be generated for a specific application by
specifying netlist of. components after. profiling and analyzing the
application.

Compilation: The compiler maps the input € code onithe given

architecture.

RITL generation: RTL generator transiates the NISC netlist and the
output of compiler intorsynthesizable RIL.

Synthesis: Tihe finalfresult can be simulated and synthesizedi for.
final implementation on EPGA or ASIC.

Refinement: After analysis; application and/or architecture can
be redefined until the desired results are achieved.

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

Code and datapath refinement

for(int =0, /<B; i++) T for(int =0; i<B; ++)
for(int j=0; j<8; f++}{ for(int j=0; j<8, j++)
sum={, iB=i=8, 2
for(int k=0; k< k++) Code Sum="[A+8) % *(B+) Comparison of
sum = sum + A[i[k] = BlKIL]]; Lefineme sum+= A+ B+ 1) =S B+E+), Customized DCT (CDCT) datapaths

G} = sum e
: CY0) = sum;

Application JF il
hﬁ} o _-p Application

== Momalmd axec_ Tima —* MNomalmad pavar
@ Momalmd araa =i o aliaed s

L
 W—

v

oEBEEEREEEE.LE

T T T T T T T .
HMIPS COCTICOCT2 COCTICOC T COCTS COC ™ CROTT

CDOTT vs. NMIPS
I times pertormance improyeme nt
1.3 times power neduction
12,8 times energy savings
3 times area reduction

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Technology Strength

Both top-down and bottom:-up design flow.

a Standard behavioralisynthesis (a.k.a. high-level
synthesis or HLS) tools provide only a top-down
design flow (from high-level € to'low-level RIL)

m ASIP approaches provide only:a boettem:up; design
flow: (from custom:instructions up to; using themjin
the application)

a NISC provides both'top-down flow (by generating
architecture from C) and! boettom-tp flow (by providing
datapath as input)

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Technology Strength

Fast & Predictable path to implementation
= Wheni using behavioral synthesis, aichange in the application will result in
many changes, inthe generated RIL

There is hoiway to predict or. correlate the application changesito the changes
in the results

Tlherefore the only way to improve unsatisfactory results is by try-and-error'and
guess-work

m When using ASIP, after adding a hew custom instruction, the designer
should either use HLS to synthesis the datapathiand controller

(Unpredictable results), or must do)it manually (very time consuming)

s NISC enables the designers to control every aspect of the design
Designer. can select the exact points for improvement and thenido it guickly

Eor example; by directly'changing the GNR description|of architecture; the
designer. can reduce al critical path delay or'fix:complex multiplexers:and
connections that costume too much power or' make the layout unroutable

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Technology Strength

Designer-controled design space exploration

m Since other tools anditechniques do not provide fast
& predictable pathito implementation, the designer
can at best explore the design aspects that the tool
provides but not the ones the designer wants!

a Sine datapath canibe aniinput in NISC Technology,
the designer caniexplore options for quality: metrics
selectively

s Eor example, designer can fecus on dynamic power:
minimization; by modifying the connections or gating
or lateching them In the datapath description and
guickly see the effect on the final results

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC Technology Strength

Right mixture of standard languages

m Since ANSIIC alone is not enough for designing aicomplete
system, all HLS tools provide their owniextension of C as input
language

= Suchiextensions require extra effort forlearning. Additionally,
they prevent the use ofiunmodified C code and lock the
designer into a proprietary tool by making the developed

algorithms not-portable to other tools.
a NISC Technology only uses standard languages

m Designers do not neediextra training andialso can use their
favorite development teols suchias editors and debuggers

m NISC provides a seamless way of' combining standardC and
Verilog through pre-bound functions enable the'inclusion of
low-levellVerilog code inside a C program

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC on WISHBONE

Controller

Basic NISC
WISHBONE
Interface

Externallnputl

Externallnput2 Datapath
| ExternalOutput

NISC Data Memory
WISHBONE
Interface

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

NISC as coprocessor

WS WS WA Y3 YL Y LW Wishbone Interconnect TSK3000A 32-Bit RISC Processor
EFEre LEDS[7.0] &

g
g
-
g

|E|E
|§IEI
g o

IEIE Z
5
e ==]
|gl

aslLaza2s'qal

ge
s
g

ME_ADE, O[31.9]
ME_DAT I[31.4]
ME_DAT_C[31.0]
ME_SEL Of2.0]

[}

(=}

Z

Elg,

5
=2

il
55

3
et
P
55
ey

B
8=%

5535338
2383

g
g

LLLLLy
75
-

=9

=
|

Current Configuration

Moo i Hot Installed
Debug Hardware ¢ Installed
Internal Memory : 4 KB

MEM_STB_I
MEM CYC 1
MEM_ACK D
MEM_ADDE_I[15.0]

U_WrappeIMISC
WiappedWISC SchDoc

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

References and further'reading

DL Gajski, "NISC: The Ultimate Reconfigurable Component”,
Center: for Embedded Computer'Systems, TR 03-28; October
2003.

NISCiTechnology & Toolset, URL:

VI Reshadi; D. Gajski; “A Cycle-Accurate Compilation Algorithm
for'Custom| Pipelined Datapaths®; International Sympositumion
Hardware/Sortware Codesign and System, Synthesis

(CODESTISSS), pp 24-26, September 2005.

B. Gorjiara; M. Reshadi, D: Gajski; "Generic Architecture
Description for Retargetable Compilation and Synthesis of
Application-Specific Pipelined IPs", International' Conference on
Computer'Design (ICCD); October 2006.

EESTEC Workshop - May,26-30, 2008

University ofi Zagreb, Faculty oft Electrotechnics and Comupting

