
University of ZagrebUniversity of ZagrebUniversity of ZagrebUniversity of ZagrebUniversity of ZagrebUniversity of ZagrebUniversity of ZagrebUniversity of Zagreb
Faculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and ComputingFaculty of Electrical Engineering and Computing

ApplicationApplication orientedoriented embeddedembedded

systemssystems

ZEMRIS, 17.10.2008.ZEMRIS, 17.10.2008.

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

22/24/24

AgendaAgenda

�� DemoDemo

�� NISCNISC DesignDesign FlowFlow

�� IP Cores Integration IP Cores Integration in NISC in NISC environmentenvironment

�� ComplexComplex ExampleExample

�� NISC as NISC as CoCo--ProcessorProcessor

�� ESE: Embedded System Environment ESE: Embedded System Environment

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

33/24/24

NISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (C--------totototototototo--------RTL)RTL)RTL)RTL)RTL)RTL)RTL)RTL)

�� NISC TechnologyNISC Technology

�� CC--toto--RTL SynthesisRTL Synthesis

�� Embedded CustomEmbedded Custom--

Processor DesignProcessor Design

�� Design Space ExplorationDesign Space Exploration

�� Inputs:Inputs:

�� C CodeC Code

�� Architecture SelectionArchitecture Selection

�� Outputs:Outputs:

�� Synthesizable VerilogSynthesizable Verilog

Source: NISC Technology & Toolset (www. .ics.uci.edu/~nisc/)

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

44/24/24

NISC Design FlowNISC Design Flow

1.1. Write application in CWrite application in C

2.2. Select a NISC architectureSelect a NISC architecture

3.3. Compile C using NISC ToolsetCompile C using NISC Toolset

4.4. Simulate/debug/evaluateSimulate/debug/evaluate

5.5. If not satisfactory Change If not satisfactory Change

program/architecture/both (repeat steps 1program/architecture/both (repeat steps 1--4)4)

6.6. Generate RTL for Generate RTL for FPGAs/ASICsFPGAs/ASICs

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

55/24/24

NISC DemoNISC Demo

Inputs -> User Pushbuttons Output -> LCD
Source: NISC Technology & Toolset

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

66/24/24

NISC Demo C CodeNISC Demo C Code
#include "processor.h"

/*Please refer to http://www.cecs.uci.edu/~nisc/too lset/release-notes.html to see limitations on
C code*/

/* The main routine for the Nisc. Your project must have a "void NiscMain()" function. */

#pragma optimize("", off)

void NiscMain()

{

/*

* Add your code here.

*/

}

#pragma optimize("", on)

/*The main routine for interrupt handling. Your pro ject must have a "void NiscInterrupt()"
function. */

void NiscInterrupt()

{

/*

* Add your interrupt service routine code here.

* You can process all interrupts and determine prio rity here. e.g.

switch(interrupt_number){case 0: ...}

* Remember, you need to disable, clear, and enable interrupts using the PreBound functions.

*/

}

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

77/24/24

NISC Demo NISC Demo –– C CodeC Code
#include "processor.h“

#pragma optimize("", off)

void NiscMain()

{

...

switch(iNum)

{

case 0: LCDPrintString("EAST"); break;

case 1: LCDPrintString("CENTER"); break;

case 2: LCDPrintString("WEST"); break;

case 3: LCDPrintString("SOUTH"); break;

}

...

}

#pragma optimize("", on)

//The main routine for interrupt handling.

void NiscInterrupt()

{

iNum = __$IU_interruptNumber(); //Get the current interrupt number

__$IU_clearInterrupt(iNum); //Clear the current interrupt

}

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

88/24/24

IP Cores Integration in NISC environmentIP Cores Integration in NISC environment

�� Simple usage of thirdSimple usage of third--party IP Coresparty IP Cores

�� Example: Xilinx Example: Xilinx CoreGeneratorCoreGenerator

�� DiviDivider problem der problem

�� Software Software dividividerder

�� SlowSlow operationoperation

�� Hardware divider core Hardware divider core

�� can help to speedcan help to speed--up the execution up the execution

�� Pipelined divisionsPipelined divisions

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

99/24/24

IP Cores Integration IP Cores Integration

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1010/24/24

Xilinx divider coreXilinx divider core

� RadixRadixRadixRadix----2 Feature Summary 2 Feature Summary 2 Feature Summary 2 Feature Summary

� Provides quotient with integer or
fractional remainder

� Pipelined architecture for increased
throughput

� Pipeline reduction for size versus
throughput selections

� Dividend width from 2 to 32 bits

� Divisor width from 2 to 32 bits

� Independent dividend, divisor and
fractional bit widths

� Fully synchronous design using a
single clock

� Supports unsigned or two’s
complement signed numbers

� Can implement 1/X (reciprocal)
function

� Fully registered outputs Source: Xilinx, Pipelined divider v2.0,

LogiCore Product Specification

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1111/24/24

NISC benefitNISC benefit
�� Based on IP technologyBased on IP technology

�� Allows perfect design tuning to applicationAllows perfect design tuning to application

�� Produces RTL for custom implementationProduces RTL for custom implementation

�� Single compiler/simulator for all NISC designsSingle compiler/simulator for all NISC designs

�� C codes compiled directly to HWC codes compiled directly to HW

�� Unifies SW and HW conceptsUnifies SW and HW concepts

�� Simplifies design, tools, education, design scienceSimplifies design, tools, education, design science

�� Fast PrototypeFast Prototype

�� DesignDesign GoalGoal Verification?Verification?
�� Behavioral SimulationBehavioral Simulation

�� Does not show the actual timing relations of the final implementDoes not show the actual timing relations of the final implementation ation

�� Post Place and Route SimulationPost Place and Route Simulation
�� Takes too long (over a day!)Takes too long (over a day!)

�� FPGA FPGA boardboard implementationimplementation

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1212/24/241212/N!/N!

Complex ExampleComplex Example

�� Binary Decision Diagram treesBinary Decision Diagram trees

�� Used in Formal Verification techniquesUsed in Formal Verification techniques

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1313/24/241313/N!/N!

Complex Example EvaluationComplex Example Evaluation

�� The goals:The goals:

�� Measuring runMeasuring run--timetime

�� The times The times ofof specific application sectionsspecific application sections

�� The time The time of of operationsoperations

�� PC Intel Core2 1.86GHz 6PC Intel Core2 1.86GHz 6µµss
�� VirtexVirtex--5 NISC 33MHz5 NISC 33MHz 387387µµss
�� VirtexVirtex--5 NISC 33MHz5 NISC 33MHz 127127µµss
�� No No optimizationoptimization!!!!!!

�� < 60 < 60 µµs s expectedexpected

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1414/24/24

Achieved ResultsAchieved Results

�� Case study on DCT algorithmCase study on DCT algorithm

Source: B. Gorjiara, M. Reshadi, D. Gajski, "Designing a Custom Architecture for DCT Using NISC Technology"

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1515/24/24

NISC as a CoprocessorNISC as a Coprocessor

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1616/24/24

NISC as a CoprocessorNISC as a Coprocessor

�� Simple functionsSimple functions
�� result = function(arg1, arg2, result = function(arg1, arg2, ……, , argNargN););

�� Using arguments as direct inputs to Using arguments as direct inputs to datapathdatapath’’ss
functional unitsfunctional units

�� Direct output of resultsDirect output of results

�� Data transformsData transforms
�� result[i:jresult[i:j] =] = function(inputs[k:lfunction(inputs[k:l]);]);

�� Direct access to Direct access to NISCNISC’’ss data memory data memory

�� Transfer Transfer

�� Completion detection through pooling or Completion detection through pooling or
interruptsinterrupts

Copyright 2006, CECSESE 17

ESE: Embedded System Environment

• Technology advantages
• No basic change in design methodology required

• ES methodology follows present manual design process

• Productivity gain of more than 1000X demonstrated
• Designers do not write models

• Simple change management: 1-day change
• No rework for new design decisions

• High error-reduction: Automation + verification
• Error-prone tasks are automated

• Simplified globally-distributed design
• Fast exchange of design decisions and easy impact estimates

• Benefit through derivatives designs
• No need for complete redesign

• Better market penetration through customization
• Shorter Time-to-Market through automation

Copyright 2006, CECSESE 18

Model Accuracy vs. Execution Time

Time and accuracy trade off among different models

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3)

Accuracy

100%

~92%

~80%

Board

Timed TLM

ISM

PCAM

TLM: Transaction Level Model
ISM: Instruction Set Model
PCAM: Pin/Cycle Accurate Model

Copyright 2006, CECSESE 19

Design Quality: Manual

• Area
• % of FPGA slices and BRAMS

• Performance
• Time to decode 1 frame of MP3 data

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

Design Points

%
 c

h
ip

 u
ti

li
za

ti
o

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

se
co

n
d

s %Slices

%BRAMs

Exec. time

Copyright 2006, CECSESE 20

Design Quality: ESE

• Area
• ESE designs use fewer FPGA slices and more BRAMs than manual

HW

• Performance
• ESE designs execute at same speed as manual designs

0
10
20
30
40
50
60
70
80
90

100

SW+0 SW+1 SW+2 SW+4

Design Points

%
 c

h
ip

 u
ti

li
za

ti
o

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

se
co

n
d

s %Slices

%BRAMs

Exec. time

Copyright 2006, CECSESE 21

0

10

20

30

40

50

60

70

Spec. TLM RTL Board

models

p
er

so
n

-d
ay

s SW+0

SW+1

SW+2

SW+4

Development Time: ESE vs. Manual

• ESE drastically cuts RTL and Board development time
• Manual development includes months of RTL coding

• Models can be developed at Spec level with ESE
• TLM, RTL and Board models are generated automatically by ESE

ESE

Manual

Copyright 2006, CECSESE 22

Validation Time: ESE vs. Traditional

• ESE cuts validation time from hours to seconds
• No need to verify RTL models for every design change

• Designers can perform high speed validation with TLM and board

0

1

2

3

4

5

6

7

8

9

10

Spec. TLM RTL Board
models

se
co

nd
s

SW+0

SW+1

SW+2
SW+4

ESE

X

ho
ur

s 18.06 hrs
17.71 hrs
17.56 hrs
15.93 hrs

Traditional

Copyright 2006, CECSESE 23

ESE Back-end Advantages

• HW synthesis in ESE removes the need to code and debug
large RTL HDL models

• Transducer and interface synthesis allows flexibility to
include heterogeneous IP in the design

• SW driver synthesis removes the need for SW developers to
understand HW details

• SW and HW application can be easily upgraded at TL and
validated on board

• C and graphical input of TL model allows even non-experts
to develop and test HW/SW systems with ESE

17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

2424/24/24

ReferencesReferences

� Daniel D. Daniel D. Daniel D. Daniel D. GajskiGajskiGajskiGajski: : : : ““““NISC: The Ultimate NISC: The Ultimate NISC: The Ultimate NISC: The Ultimate

ReconfigurableReconfigurableReconfigurableReconfigurable Component", Component", Component", Component", Center for Center for Center for Center for

Embedded Computer Systems, TR 03Embedded Computer Systems, TR 03Embedded Computer Systems, TR 03Embedded Computer Systems, TR 03----28282828

�� NISC Home: NISC Home: http://www.ics.uci.edu/~nischttp://www.ics.uci.edu/~nisc

�� ESE ESE HomeHome: : http://www.cecs.uci.edu/~esehttp://www.cecs.uci.edu/~ese

