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AgendaAgenda

�� DemoDemo

�� NISCNISC DesignDesign FlowFlow

�� IP Cores Integration IP Cores Integration in NISC in NISC environmentenvironment

�� ComplexComplex ExampleExample

�� NISC as NISC as CoCo--ProcessorProcessor

�� ESE: Embedded System Environment ESE: Embedded System Environment 
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NISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (CNISC Technology Toolset (C--------totototototototo--------RTL)RTL)RTL)RTL)RTL)RTL)RTL)RTL)

�� NISC TechnologyNISC Technology

�� CC--toto--RTL SynthesisRTL Synthesis

�� Embedded CustomEmbedded Custom--

Processor DesignProcessor Design

�� Design Space ExplorationDesign Space Exploration

�� Inputs:Inputs:

�� C CodeC Code

�� Architecture SelectionArchitecture Selection

�� Outputs:Outputs:

�� Synthesizable VerilogSynthesizable Verilog

Source: NISC Technology & Toolset (www. .ics.uci.edu/~nisc/)
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NISC Design FlowNISC Design Flow

1.1. Write application in CWrite application in C

2.2. Select a NISC architectureSelect a NISC architecture

3.3. Compile C using NISC ToolsetCompile C using NISC Toolset

4.4. Simulate/debug/evaluateSimulate/debug/evaluate

5.5. If not satisfactory Change If not satisfactory Change 

program/architecture/both (repeat steps 1program/architecture/both (repeat steps 1--4)4)

6.6. Generate RTL for Generate RTL for FPGAs/ASICsFPGAs/ASICs
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NISC DemoNISC Demo

Inputs -> User Pushbuttons Output -> LCD
Source: NISC Technology & Toolset



17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

66/24/24

NISC Demo C CodeNISC Demo C Code
#include "processor.h"

/*Please refer to http://www.cecs.uci.edu/~nisc/too lset/release-notes.html to see limitations on 
C code*/

/* The main routine for the Nisc. Your project must  have a "void NiscMain()" function. */

#pragma optimize("", off)

void NiscMain()

{

/*

* Add your code here.

*/

}

#pragma optimize("", on)

/*The main routine for interrupt handling. Your pro ject must have a "void NiscInterrupt()" 
function. */

void NiscInterrupt()

{

/*

* Add your interrupt service routine code here.

* You can process all interrupts and determine prio rity here. e.g.    

switch(interrupt_number){case 0: ...}

* Remember, you need to disable, clear, and enable interrupts using the PreBound functions.

*/

}



17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

77/24/24

NISC Demo NISC Demo –– C CodeC Code
#include "processor.h“

#pragma optimize("", off)

void NiscMain()

{

...

switch(iNum)

{

case 0: LCDPrintString("EAST"); break;

case 1: LCDPrintString("CENTER"); break;

case 2: LCDPrintString("WEST"); break;

case 3: LCDPrintString("SOUTH"); break;

}

...

}

#pragma optimize("", on)

//The main routine for interrupt handling. 

void NiscInterrupt()

{

iNum = __$IU_interruptNumber(); //Get the current interrupt number

__$IU_clearInterrupt(iNum); //Clear the current interrupt

}
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IP Cores Integration in NISC environmentIP Cores Integration in NISC environment

�� Simple usage of thirdSimple usage of third--party IP Coresparty IP Cores

�� Example: Xilinx Example: Xilinx CoreGeneratorCoreGenerator

�� DiviDivider problem der problem 

�� Software Software dividividerder

�� SlowSlow operationoperation

�� Hardware divider core Hardware divider core 

�� can help to speedcan help to speed--up the execution up the execution 

�� Pipelined divisionsPipelined divisions
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IP Cores Integration IP Cores Integration 
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Xilinx divider coreXilinx divider core

� RadixRadixRadixRadix----2 Feature Summary 2 Feature Summary 2 Feature Summary 2 Feature Summary 

� Provides quotient with integer or 
fractional remainder 

� Pipelined architecture for increased 
throughput 

� Pipeline reduction for size versus 
throughput selections 

� Dividend width from 2 to 32 bits 

� Divisor width from 2 to 32 bits 

� Independent dividend, divisor and 
fractional bit widths 

� Fully synchronous design using a 
single clock 

� Supports unsigned or two’s 
complement signed numbers 

� Can implement 1/X (reciprocal) 
function 

� Fully registered outputs Source: Xilinx, Pipelined divider v2.0, 

LogiCore Product Specification 
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NISC benefitNISC benefit
�� Based on IP technologyBased on IP technology

�� Allows perfect design tuning to applicationAllows perfect design tuning to application

�� Produces RTL for custom implementationProduces RTL for custom implementation

�� Single compiler/simulator for all NISC designsSingle compiler/simulator for all NISC designs

�� C codes compiled directly to HWC codes compiled directly to HW

�� Unifies SW and HW conceptsUnifies SW and HW concepts

�� Simplifies design, tools, education, design scienceSimplifies design, tools, education, design science

�� Fast PrototypeFast Prototype

�� DesignDesign GoalGoal Verification?Verification?
�� Behavioral SimulationBehavioral Simulation

�� Does not show the actual timing relations of the final implementDoes not show the actual timing relations of the final implementation ation 

�� Post Place and Route SimulationPost Place and Route Simulation
�� Takes too long (over a day!)Takes too long (over a day!)

�� FPGA FPGA boardboard implementationimplementation



17.10.2008.17.10.2008.
University of Zagreb, Faculty of Electrical Engineering and CompUniversity of Zagreb, Faculty of Electrical Engineering and Computinguting

1212/24/241212/N!/N!

Complex ExampleComplex Example

�� Binary Decision Diagram treesBinary Decision Diagram trees

�� Used in Formal Verification techniquesUsed in Formal Verification techniques
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Complex Example EvaluationComplex Example Evaluation

�� The goals:The goals:

�� Measuring runMeasuring run--timetime

�� The times The times ofof specific application sectionsspecific application sections

�� The time The time of of operationsoperations

�� PC Intel Core2 1.86GHz       6PC Intel Core2 1.86GHz       6µµss
�� VirtexVirtex--5 NISC 33MHz5 NISC 33MHz 387387µµss
�� VirtexVirtex--5 NISC 33MHz5 NISC 33MHz 127127µµss
�� No No optimizationoptimization!!!!!!

�� < 60 < 60 µµs s expectedexpected
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Achieved ResultsAchieved Results

�� Case study on DCT algorithmCase study on DCT algorithm

Source: B. Gorjiara, M. Reshadi, D. Gajski, "Designing a Custom Architecture for DCT Using NISC Technology" 
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NISC as a CoprocessorNISC as a Coprocessor
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NISC as a CoprocessorNISC as a Coprocessor

�� Simple functionsSimple functions
�� result = function(arg1, arg2, result = function(arg1, arg2, ……, , argNargN ););

�� Using arguments as direct inputs to Using arguments as direct inputs to datapathdatapath’’ss
functional unitsfunctional units

�� Direct output of resultsDirect output of results

�� Data transformsData transforms
�� result[i:jresult[i:j ] = ] = function(inputs[k:lfunction(inputs[k:l ]);]);

�� Direct access to Direct access to NISCNISC’’ss data memory data memory 

�� Transfer Transfer 

�� Completion detection through pooling or Completion detection through pooling or 
interruptsinterrupts
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ESE: Embedded System Environment 

• Technology advantages
• No basic change in design methodology required

• ES methodology follows present manual design process

• Productivity gain of more than 1000X demonstrated
• Designers do not write models

• Simple change management: 1-day change
• No rework for new design decisions

• High error-reduction: Automation + verification
• Error-prone tasks are automated

• Simplified globally-distributed design
• Fast exchange of design decisions and easy impact estimates

• Benefit through derivatives designs
• No need for complete redesign

• Better market penetration through customization
• Shorter Time-to-Market through automation
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Model Accuracy vs. Execution Time

Time and accuracy trade off among different models

0 2sec 3~4 hrs 15~18hrs

Func. TLM

Exec. Time (MP3) 

Accuracy

100%

~92%

~80%

Board

Timed TLM

ISM

PCAM

TLM: Transaction Level Model
ISM: Instruction Set Model
PCAM: Pin/Cycle Accurate Model
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Design Quality: Manual

• Area
• % of FPGA slices and BRAMS

• Performance
• Time to decode 1 frame of MP3 data
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Design Quality: ESE

• Area
• ESE designs use fewer FPGA slices and more BRAMs than manual 

HW

• Performance
• ESE designs execute at same speed as manual designs
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Development Time: ESE vs. Manual

• ESE drastically cuts RTL and Board development time
• Manual development includes months of RTL coding

• Models can be developed at Spec level with ESE
• TLM, RTL and Board models are generated automatically by ESE

ESE

Manual
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Validation Time: ESE vs. Traditional

• ESE cuts validation time from hours to seconds
• No need to verify RTL models for every design change

• Designers can perform high speed validation with TLM and board
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ESE Back-end Advantages

• HW synthesis in ESE removes the need to code and debug 
large RTL HDL models 

• Transducer and interface synthesis allows flexibility to 
include heterogeneous IP in the design

• SW driver synthesis removes the need for SW developers to 
understand HW details

• SW and HW application can be easily upgraded at TL and 
validated on board

• C and graphical input of TL model allows even non-experts 
to develop and test HW/SW systems with ESE 
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