
Early Forest Fire Detection with Sensor Networks:

Sliding Window Skylines Approach

Krešimir Pripužić, Hrvoje Belani, Marin Vuković

University of Zagreb, Faculty of Electrical Engineering and Computing,

Department of Telecommunications, Unska 3, HR-10000 Zagreb, Croatia

{kresimir.pripuzic, hrvoje.belani, marin.vukovic}@fer.hr

Abstract. Wireless sensor networks are widely used in environmental

applications, like forest fire detection. Although forest fires occur relatively

rarely, their number is increasing in Europe in the last years, so their

manifestation must be early detected in order to prevent higher damages. To

minimize needless communication between the sensor nodes for this usage,

new data suppression technique using sliding window skylines is described in

this paper. We experimentally evaluate our algorithm for continuous sliding

windows skylines computation, and show its usability in practice.

Keywords: Data suppression, forest fire detection, sensor network, sliding

window skylines, experimental evaluation.

1 Introduction

Sensor network technology is considered as one of the key technologies for 21st

Century [1]. It is a network of spatially distributed autonomous devices with various

sensors that cooperatively monitor certain conditions (e.g. physical or environmental)

at different locations. Communication between sensors is wireless in most cases. A

wireless sensor network (WSN) is the term for Low-Rate Wireless Personal Area

Networks employing no fixed infrastructure and having communication links less

than 10 meters in length and sensors centered on a subject or individual or in the

targeted area [2].

WSN find their spread usage in a variety of applications: military, environmental,

health, etc. The amount of data sent over the network can be very low, and the

message latency can be on the order of minutes. Yet, costs must be low, and power

consumption must be low enough for the entire network to last an entire required

timeframe (e.g. season). These low-data-rate applications involve sensing of one form

or another and require short-range links without a preexisting infrastructure on site,

except network of sensors. Sensors can monitor conditions at different locations, such

as temperature, relative humidity, wetness, lightning conditions, smoke, atmospheric

pressure, wind speed and direction, etc [3].

According to the application type and design requirements, there are two basic

types of WSNs: the one for rare event detection (e.g. forest fire detection or intrusion

detection), and the other for periodic data gathering (e.g. temperature monitoring or

biosensors). Although forest fire occurs relatively rarely, its detection must be early

manifested in order to prevent higher damages. For network nodes to live long

enough to fulfill their purpose, supply batteries consumption must be minimized.

Hence, needless communication between the nodes must be lowered using different

data aggregation and suppression techniques. New data suppression technique using

sliding window skylines is described in this paper.

The next section discusses applicability of WSNs for forest fire detection, their

advantages comparing to other solutions (e.g. satellite imagery) and issues that must

be dealt with in order to improve reliability of the solutions and make readings of fire

detection more accurate. The third section describes implementation of algorithm that

uses sliding window skylines and simulation based on the case study of early forest

fire detection. The fourth section presents the algorithm implementation and its

simulation in WSNs usage for forest fire detection. The fifth section evaluates related

work and the final section gives conclusion and future work.

2 Wireless Sensor Networks for Forest Fire Detection

As stated before, various applications deploy large number of small and inexpensive

sensor nodes with one or more sensors attached and a fewer number of intermediate

nodes, which aggregate and/or suppress sensing data forwarding them to the sink.

Nowadays, WSNs are widely applied in environmental applications, such as habitat

monitoring, agriculture research, earthquake monitoring, traffic control and fire

detection, because of the nature of such applications that involve people, assets and

environment in events of disasters, accidents and other needs of a today’s society.

Wild fires, including forest and plant fires, are uncontrolled fires occurring in wild

and rural areas which can cause significant damage to natural and human resources

[4]. Common causes of forest fires are lightning strikes, human carelessness, and

exposure of fuel to extreme heat and aridity.

In the last years heat waves in Europe caused magnified number of forest fires with

devastating outcomes. Croatia also belongs to countries with increased risk of

summer forest fires, especially on Dalmatian coast and islands in Adriatic Sea. For

example, in period from January 1st to December 31st 2007 there were 8945 fires

registered in Croatia, and 5455 of them (61%) were plant and forest fires that burnt

the area of 67992 hectares [5]. Comparing these data with the ones for 2006, it can be

seen that number of fires has increased for 25.7%, number of plant fires for even

52.6%, and the burnt area has increased 3.6 times. Burnt area index, given in hectares

per fire, has increased even 2.4 times, which shows the enlarged threat of every fire

occurred for landscape, human and animal life in affected areas. Therefore, early

detection and suppression of forest fires is crucial for restriction of their propagation.

Most of existing forest fire detection systems rely on the satellite imagery. These

approaches are limited due to the weather conditions (e.g. clouds) that can seriously

decrease the detection accuracy. These issues become irrelevant when implementing

forest fire detection using WSNs.

One of the most important systems aspects of a WSN for forest fire detection is its

lifetime [6], because the fire detection network must operate for a very long period of

time in order to detect such a comparatively rare event. Occurring of forest fires must

not be confused with sensor battery exhaustion, as well as antennas being reoriented

in the wrong direction by falling branches, curious animals, wind, etc. Another critical

issue for such application is field coverage, since the WSN must identify the event

quickly and accurately. In order to do so each node must be given a unique

identification number (ID) which is associated with a node’s precise position in the

WSN or globally, with the use of GPS. With knowledge of the node ID and specific

coverage area it is possible to precisely locate the source of the fire.

Fires can differ in size, shape, growth, frequency, and intensity. Nevertheless, all

these parameters become irrelevant if it is possible to notice the fire at its very

beginning. However, for early fire detection, coverage area of single node should be

as low as possible; if the coverage area is too wide the sensor node will report fire

once the fire reaches the sensor, which could be too late. Small size coverage areas

would require more sensors which could be too expensive, so it is necessary to reach

the optimum size of coverage area, which is out of the scope of this paper.

The sensors clustering using a distributed protocol, their physical distribution along

the targeted area and data routing problems are outside the scope of this paper.

 3 Sliding Window Skylines

Suppose that each sensor in our network measures a certain number of parameters to

which we will refer as attributes. These attributes form multi-dimensional attribute

space. Therefore, we assume that every sensor reading is a point in the attribute space.

For any two values of an attribute (e.g. temperature), it is easy to say which of the

values is better indicator of forest fire (one with the higher temperature). In the case

of sensor readings, which are multi-dimensional, it is not so easy to say which reading

is better indicator of forest fire. For example, let us take a look at Figure 1, where

some readings in two-dimensional attribute space are shown. We have two attributes:

temperature and wind speed. We want to know which readings are better indicators of

forest fire than the others. This is typical example of ranking objects by more than one

criterion. In our example, a reading is better indicator than another (i.e. we will say

that it dominates) if it has larger temperature and higher wind speed. The top readings

are the set of readings which are not dominated by any other reading. They are shown

as gray dots in the figure. We see that they form line which bounds all other readings.

This line is usually called the skyline, while the top readings are called skylines.

Each sensor in our network periodically measures attributes. For early detection of

forest fire we do not have to collect all these readings at sink. Actually, at some point

in time, it is sufficient to know skylines, because all other readings are bounded with

them. To save power, we propagate only the skylines to the sink. At each inner sensor

node on path to the sink, we aggregate both its own and received skylines, and send

these aggregated skylines to next node on the path. Thereby, at the sink, we will

receive skylines that will be aggregates of the whole WSN, such that all readings of

all sensors will be bounded with them. This is an effective way of sensor readings

aggregation, which reduces power consumption of WSN, because local processing

and storage at node consumes less energy than transmitting data over the radio [19].

s
k
y
lin

e

skyline

1/temperature

1
/w

in
d

 s
p

e
e

d

Figure 1 - Skyline of Sensor Readings

At the sink, we want to continuously monitor the environment, and therefore we

have to know only most recent skylines, because the older ones do not reflect a

present state of the monitored environment. For all readings (and skylines) we define

lifetime in the form of time window. Every reading older than a size of the window

will be deleted from the network. If the size is very little, every reading will be

skyline in the window, and this will result in too many transmitted readings. On

contrary, if the size is too large, aggregated skylines will not adequately reflect the

present state. In practice, this size highly depends on dynamism of the phenomenon of

interest (i.e. forest fire in our case).

4 Algorithm

At each sensor node we maintain an index of unexpired skylines and readings

dominated by them. We propagate every change in the skylines to next sensor node

on the path to the sink. In the rest of this section we present our algorithm for

continuous maintaining of sliding window skylines. This algorithm is run at every

sensor node, once for every of its own and received readings. The synchronization

between nodes is not needed, because every node on the path has its own clock and

for each propagated skyline it adds time spent on it. In this way, any node on the path

may delete expired readings from its index.

method add new reading

 check oldest skyline

 foreach skyline

 if (skyline dominates reading)

 add reading to skyline

 return

 else if (reading dominates skyline)

 remove skyline

 add reading to skylines and propagate it.

The upper method adds new reading to the index. First we check if oldest skyline is

expired. After that we go through present skylines and check if the reading is

dominated by any of them. If this is the case, we add it to the set of readings

dominated by the first such skyline we encountered. Otherwise, we remove from the

index every skyline dominated by it, add it to the skylines and propagate it to next

node on the path. We have to keep all younger readings that are dominated by any

skyline (or any other reading) in the index, because they are potential skylines in

future. Readings dominated by any younger reading (or skyline) cannot become

skyline in future, and we may delete them from index. It is important to notice that we

do not have to add a reading to all sets of all skylines that dominate it, because it may

become skyline only if all such skylines are expired.

The following method adds a reading to the set of readings dominated by some

other reading (i.e. parent). It is almost identical to the upper method, except we do not

check if the parent is expired and we do not propagate reading after adding it to

parent’s children, because it is not a skyline. We do not have to check if the parent is

expired, because it is not a skyline, and therefore it is younger than unexpired skyline

which dominates it.

method add reading to parent

 foreach child of parent

 if (child dominates reading)

 add reading to child

 return

 else if (reading dominates child)

 remove child

 add reading to children of parent.

 As we said before, each time we add new reading we have to check if the oldest

skyline is expired. If it is expired we have to remove it and add all of its children from

the index. The following two methods do this job. To improve performances of our

algorithm we keep skylines (and children of other readings) in red-black trees sorted

by their time of expiry.

method check oldest skyline

 if (oldest skyline is too old)

 remove oldest skyline from skylines

 foreach child of oldest skyline

 add child.

method add reading

 foreach skyline

 if (skyline dominates reading)

 if (skyline is younger than reading)

 foreach child of reading

 add child

 return

 else

 add reading to skyline

 return

 add reading to skylines and propagate it.

5 Experimental Evaluation

In this section we examine our algorithm and index structure on the performances of

sliding window skyline computation. Following well-established methodology set by

previous research on skyline algorithms [12, 13, 14] we choose to use the following

three data distributions: independent, correlated and anti-correlated. In this section we

want to see simulation runtimes for different cardinality (i.e. the number of readings)

and different sizes of time windows. Shorter runtime means less processing at every

sensor node in the network, and therefore smaller consuming of battery power which

results in longer lifetime of the network.

The following setup was used in experiments: We created synthetic datasets and

vary the cardinality from 10 thousands to 1 million. We fixed dimensionality to 2, and

used 2 different sizes of the time window. The first size was 5000, and the second was

10 percent of the cardinality. Experiments were run in Java on a PC with 2.8 GHz

Pentium Processor and 1GB of main memory.

0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2
independent data

n

ru
n
ti
m

e
 (

s
)

0 2 4 6 8 10

x 10
5

0

0.5

1

1.5

2
correlated data

n

ru
n
ti
m

e
 (

s
)

0 2 4 6 8 10

x 10
5

0

10

20

30

40

50

60
anti-correlated data

n

ru
n
ti
m

e
 (

s
)

w
a
 = 5000

w
b
 = n/10

w
a
 = 5000

w
b
 = n/10

w
a
 = 5000

w
b
 = n/10

Figure 2 - Results of Experiments

In Figure 2 we can see the results of the experiments, where n is the cardinality.

We conclude that there is no significant difference in runtime for the independent and

correlated datasets. We see that for larger cardinalities there is slight increase in the

runtime for window wb, which has the size of 10 percent of the cardinality. This is

expected, because skylines live longer in the case of larger window sizes, and

therefore the number of readings in the index is larger. For the anti-correlated dataset,

we see that the runtime is more than one order of magnitude longer. This is expected,

because many readings are skylines in the anti-correlated dataset.

Morse at al. [14] did an extensive evaluation of different algorithms for continuous

skyline computation. For the independent and correlated datasets the runtime of our

algorithm is one order of magnitude smaller (0.1 s comparing to their 1 s for

cardinality 5000), while for the anti-correlated dataset our algorithm is equally fast to

their algorithm. They are using R
*
-trees and Quadtrees for indexing of skylines (and

other readings). We suppose that our approach is faster for continuous skyline

computation over sliding windows because we store skylines (and other readings)

directly to the index as its nodes, while Morse at al. are storing them as end-nodes

(i.e. leaves) of used structures. On the other hand, the memory consumption should be

lower in our approach, because of the same reason.

6 Related Work

We have recognized two different topics of related work for our subject: usage of

wireless WSNs in fire detection systems, and skylines computation in WSNs.

Some papers exploit the essence of artificial neural networks to perform simple

calculations at many organized single nodes in order to conduct complex data

processing [7]. This approach also, they claim, reduces communication overhead and

energy consumption. Some recent, also domestic, works combine video and network

sensor monitoring [8] [9], but their approach doesn’t analyze the importance of data

aggregation and suppression from sensors. They rely on algorithms for image analysis

and looking of visual signs of forest fires, particularly forest fire smoke during the day

and forest fire flames during the night. Some solutions employ the usage of mobile

agents [8] [10] for efficient network exploration and fire detection, but the

communication paths seem overused while agents tracking fire, which exhausts the

sensor supplies (e.g. batteries). Some enhanced supply solutions exploit solar energy.

Skyline computation in WSNs has received much attention recently [15, 16, 17].

Kwon at al. [15] propose an algorithm for in-network processing of skyline queries.

Chen at al. [17] use advanced approach for continuous in-network skyline

computation that employs hierarchical thresholds at the nodes. Xin at al. [16] propose

an energy-efficient algorithm for continuous skyline computation. There are also

many other paper related to continuous skyline computation, which are not related to

WSNs [12, 14, 18]. We compared our algorithm with [14] in Section 5.

7 Conclusion

This paper proposes enhanced algorithm for continuous skyline computation in order

to suppress collected data from wireless sensors that are monitoring environment for

potential forest fires. In experimental evaluation, we showed that our approach is

faster than other algorithms for continuous skyline computation over sliding windows.

Because of the increased risk of forest fires in Croatia, especially during summer

seasons, early detection and suppression of forest fires is crucial, in order to restrict

their propagation. According to the Law of fire protection in the Republic of Croatia,

National Protection and Rescue Directorate and its Fire Fighting Sector are obligated

to propose Activity Program of special measures in fire protection on a yearly basis.

One of the main goals of the program is development and implementation of new fire

protection systems. This paper therefore represents useful and applicable contribution

in that direction.

Acknowledgements

This work was carried out within the research project "Content Delivery and Mobility

of Users and Services in New Generation Networks", supported by the Ministry of

Science, Education and Sports of the Republic of Croatia.

References

1. Chong, C., Kumar, S.: Sensor Networks: Evolution, Opportunities and Challenges. In:

Proceedings of the IEEE, Vol.91, No.8, pp. 1247--1256. IEEE Press, New York (2003)

2. Callaway, E.H.: Wireless Sensor Networks: Architectures and Protocols. Auerbach

Publications, CRC Press LLC, Boca Raton (2004)

3. Akyildiz, I. A., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A Survey of Sensor

Networks. IEEE Communications Magazine 40, 8, pp. 102--114. IEEE Press (2002)

4. Hedeeda, M.: Forest Fire Modeling and Early Detection using Wireless Sensor Networks.

Technical report CMPT2007, Faculty of Applied Sciences, Simon Fraser University,

Canada (2007)

5. Firefighter Gazette, No 3, Croatian Firefighter Association, Zagreb (2008) (In Croatian)

6. Tanenbaum, A.S., Gamage, C., Crispo, B.: Taking Sensor Networks from the Lab to the

Jungle. IEEE Computer, Vol.39, Issue 8, pp. 98--100. IEEE Computer Society (2006)

7. Yu, L., Wang, N., Meng, X.: Real-Time Forest Fire Detection with Wireless Sensor

Networks. In: Proceedings of International Conference on Wireless Communications,

Networking and Mobile Computing, Vol.2, pp.1214--1217. IEEE Press, New York (2005)

8. Stipanicev, D., Bodrozic, Lj., Stula, M.: Environmental Intelligence Based on Advanced

Sensor Networks. In: Proceedings of 14th International Workshop on 2007 IWSSIP&EC-

SIPMCS. Maribor, Slovenia (2007)

9. iForestFire – intelligent Forest Fire monitoring system, Faculty of Electrical Engineering,

Machine Engineering and Naval Architecture, University of Split, http://iforestfire.fesb.hr

10. Fok, C.-L., Roman, G.-C., Lu, C.: Efficient Network Exploration and Fire Detection using

Mobile Agents in a Wireless Sensor Network. ONR-MURI Review, Baltimore, MD

(2004)

11. Bekara, C., Laurent-Maknavicius, M., Bekara, K.: SAPC: A Secure Aggregation Protocol

for Cluster-Based Wireless. In: Springer's IFIP MSN 2007 proceedings, Lecture Notes

LNCS 4864. pp.784--798. The 3rd International Conference on Mobile Ad-hoc and Sensor

Networks (MSN 2007). Beijing, China (2007)

12. Lin X., Yuan Y., Wang W., Lu, H.: Stabbing the Sky: Efficient Skyline Computation over

Sliding Windows. In: Proceedings of the 21st International Conference on Data

Engineering (ICDE'05), pp.502--513. IEEE Computer Society (2005)

13. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for

skyline queries. In: Proceedings of the ACM SIGMOD International Conference on

Management of Data. San Diego, California (2003)

14. Morse, M., Patel, J. M., Grosky, W. I.: Efficient Continuous Skyline Computation. In:

Proceedings of the 22nd International Conference on Data Engineering. IEEE Computer

Society, Washington DC (2006)

15. Kwon, Y., Choi, J.-H., Chung, J.-D., Lee, S.K.: In-Network Processing for Skyline

Queries in Sensor Networks. In: IEICE Transactions on Communications, E90-B(12): pp.

3452--3459. Oxford University Press (2007)

16. Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continuously Maintaining Sliding

Window Skylines in a Sensor Network. In: Proceedings of the DASFAA 2007, pp. 509--

521. Bangkok, Thailand (2007)

17. Chen, H., Zhou, S., Guan, J.: Towards Energy-Efficient Skyline Monitoring in Wireless

Sensor Networks. In: Proceedings of the EWSN 2007, pp. 101--116. SpringerLink (2007)

18. Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. IEEE

Transactions in Knowledge Data Engineering, pp. 377--391. IEEE Computer Society

(2006)

19. D. Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., Mitra, A., Banerjee, A., Najjar,

W.: Towards In-Situ Data Storage in Sensor Databases. In: Bozanis, P., Houstis, E.N.

(eds.) Advances in Informatics. LCNS, vol. 3746, pp. 36–46. Springer, Berlin (2005)

