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Abstract. Wireless sensor networks are widely used in environmental 

applications, like forest fire detection. Although forest fires occur relatively 

rarely, their number is increasing in Europe in the last years, so their 

manifestation must be early detected in order to prevent higher damages. To 

minimize needless communication between the sensor nodes for this usage, 

new data suppression technique using sliding window skylines is described in 

this paper. We experimentally evaluate our algorithm for continuous sliding 

windows skylines computation, and show its usability in practice.   

Keywords: Data suppression, forest fire detection, sensor network, sliding 
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1   Introduction 

Sensor network technology is considered as one of the key technologies for 21st 

Century [1]. It is a network of spatially distributed autonomous devices with various 

sensors that cooperatively monitor certain conditions (e.g. physical or environmental) 

at different locations. Communication between sensors is wireless in most cases. A 

wireless sensor network (WSN) is the term for Low-Rate Wireless Personal Area 

Networks employing no fixed infrastructure and having communication links less 

than 10 meters in length and sensors centered on a subject or individual or in the 

targeted area [2]. 

WSN find their spread usage in a variety of applications: military, environmental, 

health, etc. The amount of data sent over the network can be very low, and the 

message latency can be on the order of minutes. Yet, costs must be low, and power 

consumption must be low enough for the entire network to last an entire required 

timeframe (e.g. season). These low-data-rate applications involve sensing of one form 

or another and require short-range links without a preexisting infrastructure on site, 

except network of sensors. Sensors can monitor conditions at different locations, such 

as temperature, relative humidity, wetness, lightning conditions, smoke, atmospheric 

pressure, wind speed and direction, etc [3]. 

According to the application type and design requirements, there are two basic 

types of WSNs: the one for rare event detection (e.g. forest fire detection or intrusion 

detection), and the other for periodic data gathering (e.g. temperature monitoring or 



biosensors). Although forest fire occurs relatively rarely, its detection must be early 

manifested in order to prevent higher damages. For network nodes to live long 

enough to fulfill their purpose, supply batteries consumption must be minimized. 

Hence, needless communication between the nodes must be lowered using different 

data aggregation and suppression techniques. New data suppression technique using 

sliding window skylines is described in this paper. 

The next section discusses applicability of WSNs for forest fire detection, their 

advantages comparing to other solutions (e.g. satellite imagery) and issues that must 

be dealt with in order to improve reliability of the solutions and make readings of fire 

detection more accurate. The third section describes implementation of algorithm that 

uses sliding window skylines and simulation based on the case study of early forest 

fire detection. The fourth section presents the algorithm implementation and its 

simulation in WSNs usage for forest fire detection. The fifth section evaluates related 

work and the final section gives conclusion and future work. 

2   Wireless Sensor Networks for Forest Fire Detection 

As stated before, various applications deploy large number of small and inexpensive 

sensor nodes with one or more sensors attached and a fewer number of intermediate 

nodes, which aggregate and/or suppress sensing data forwarding them to the sink. 

Nowadays, WSNs are widely applied in environmental applications, such as habitat 

monitoring, agriculture research, earthquake monitoring, traffic control and fire 

detection, because of the nature of such applications that involve people, assets and 

environment in events of disasters, accidents and other needs of a today’s society. 

Wild fires, including forest and plant fires, are uncontrolled fires occurring in wild 

and rural areas which can cause significant damage to natural and human resources 

[4]. Common causes of forest fires are lightning strikes, human carelessness, and 

exposure of fuel to extreme heat and aridity. 

In the last years heat waves in Europe caused magnified number of forest fires with 

devastating outcomes. Croatia also belongs to countries with increased risk of 

summer forest fires, especially on Dalmatian coast and islands in Adriatic Sea. For 

example, in period from January 1st to December 31st 2007 there were 8945 fires 

registered in Croatia, and 5455 of them (61%) were plant and forest fires that burnt 

the area of 67992 hectares [5]. Comparing these data with the ones for 2006, it can be 

seen that number of fires has increased for 25.7%, number of plant fires for even 

52.6%, and the burnt area has increased 3.6 times. Burnt area index, given in hectares 

per fire, has increased even 2.4 times, which shows the enlarged threat of every fire 

occurred for landscape, human and animal life in affected areas. Therefore, early 

detection and suppression of forest fires is crucial for restriction of their propagation. 

Most of existing forest fire detection systems rely on the satellite imagery. These 

approaches are limited due to the weather conditions (e.g. clouds) that can seriously 

decrease the detection accuracy. These issues become irrelevant when implementing 

forest fire detection using WSNs. 

One of the most important systems aspects of a WSN for forest fire detection is its 

lifetime [6], because the fire detection network must operate for a very long period of 



time in order to detect such a comparatively rare event. Occurring of forest fires must 

not be confused with sensor battery exhaustion, as well as antennas being reoriented 

in the wrong direction by falling branches, curious animals, wind, etc. Another critical 

issue for such application is field coverage, since the WSN must identify the event 

quickly and accurately. In order to do so each node must be given a unique 

identification number (ID) which is associated with a node’s precise position in the 

WSN or globally, with the use of GPS. With knowledge of the node ID and specific 

coverage area it is possible to precisely locate the source of the fire. 

Fires can differ in size, shape, growth, frequency, and intensity. Nevertheless, all 

these parameters become irrelevant if it is possible to notice the fire at its very 

beginning. However, for early fire detection, coverage area of single node should be 

as low as possible; if the coverage area is too wide the sensor node will report fire 

once the fire reaches the sensor, which could be too late. Small size coverage areas 

would require more sensors which could be too expensive, so it is necessary to reach 

the optimum size of coverage area, which is out of the scope of this paper.  

The sensors clustering using a distributed protocol, their physical distribution along 

the targeted area and data routing problems are outside the scope of this paper. 

 3   Sliding Window Skylines 

Suppose that each sensor in our network measures a certain number of parameters to 

which we will refer as attributes. These attributes form multi-dimensional attribute 

space. Therefore, we assume that every sensor reading is a point in the attribute space. 

For any two values of an attribute (e.g. temperature), it is easy to say which of the 

values is better indicator of forest fire (one with the higher temperature). In the case 

of sensor readings, which are multi-dimensional, it is not so easy to say which reading 

is better indicator of forest fire. For example, let us take a look at Figure 1, where 

some readings in two-dimensional attribute space are shown. We have two attributes: 

temperature and wind speed. We want to know which readings are better indicators of 

forest fire than the others. This is typical example of ranking objects by more than one 

criterion. In our example, a reading is better indicator than another (i.e. we will say 

that it dominates) if it has larger temperature and higher wind speed. The top readings 

are the set of readings which are not dominated by any other reading. They are shown 

as gray dots in the figure. We see that they form line which bounds all other readings.  

This line is usually called the skyline, while the top readings are called skylines.  

Each sensor in our network periodically measures attributes. For early detection of 

forest fire we do not have to collect all these readings at sink. Actually, at some point 

in time, it is sufficient to know skylines, because all other readings are bounded with 

them. To save power, we propagate only the skylines to the sink. At each inner sensor 

node on path to the sink, we aggregate both its own and received skylines, and send 

these aggregated skylines to next node on the path. Thereby, at the sink, we will 

receive skylines that will be aggregates of the whole WSN, such that all readings of 

all sensors will be bounded with them. This is an effective way of sensor readings 

aggregation, which reduces power consumption of WSN, because local processing 

and storage at node consumes less energy than transmitting data over the radio [19]. 
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Figure 1 - Skyline of Sensor Readings 

At the sink, we want to continuously monitor the environment, and therefore we 

have to know only most recent skylines, because the older ones do not reflect a 

present state of the monitored environment. For all readings (and skylines) we define 

lifetime in the form of time window. Every reading older than a size of the window 

will be deleted from the network. If the size is very little, every reading will be 

skyline in the window, and this will result in too many transmitted readings. On 

contrary, if the size is too large, aggregated skylines will not adequately reflect the 

present state. In practice, this size highly depends on dynamism of the phenomenon of 

interest (i.e. forest fire in our case). 

4   Algorithm 

At each sensor node we maintain an index of unexpired skylines and readings 

dominated by them. We propagate every change in the skylines to next sensor node 

on the path to the sink.  In the rest of this section we present our algorithm for 

continuous maintaining of sliding window skylines. This algorithm is run at every 

sensor node, once for every of its own and received readings. The synchronization 

between nodes is not needed, because every node on the path has its own clock and 

for each propagated skyline it adds time spent on it. In this way, any node on the path 

may delete expired readings from its index. 

method add new reading 

  check oldest skyline 

  foreach skyline  

    if (skyline dominates reading) 

      add reading to skyline  

      return 

    else if (reading dominates skyline)  

      remove skyline 

  add reading to skylines and propagate it. 

The upper method adds new reading to the index. First we check if oldest skyline is 

expired. After that we go through present skylines and check if the reading is 



dominated by any of them. If this is the case, we add it to the set of readings 

dominated by the first such skyline we encountered. Otherwise, we remove from the 

index every skyline dominated by it, add it to the skylines and propagate it to next 

node on the path. We have to keep all younger readings that are dominated by any 

skyline (or any other reading) in the index, because they are potential skylines in 

future. Readings dominated by any younger reading (or skyline) cannot become 

skyline in future, and we may delete them from index. It is important to notice that we 

do not have to add a reading to all sets of all skylines that dominate it, because it may 

become skyline only if all such skylines are expired. 

The following method adds a reading to the set of readings dominated by some 

other reading (i.e. parent). It is almost identical to the upper method, except we do not 

check if the parent is expired and we do not propagate reading after adding it to 

parent’s children, because it is not a skyline. We do not have to check if the parent is 

expired, because it is not a skyline, and therefore it is younger than unexpired skyline 

which dominates it. 

method add reading to parent 

  foreach child of parent 

    if (child dominates reading) 

      add reading to child   

      return 

    else if (reading dominates child)  

      remove child 

  add reading to children of parent. 

 As we said before, each time we add new reading we have to check if the oldest 

skyline is expired. If it is expired we have to remove it and add all of its children from 

the index. The following two methods do this job. To improve performances of our 

algorithm we keep skylines (and children of other readings) in red-black trees sorted 

by their time of expiry. 

method check oldest skyline 

  if (oldest skyline is too old) 

    remove oldest skyline from skylines  

    foreach child of oldest skyline   

      add child. 

method add reading 

  foreach skyline  

    if (skyline dominates reading)  

     if (skyline is younger than reading) 

       foreach child of reading   

         add child 

       return 

     else 

       add reading to skyline 

       return 

  add reading to skylines and propagate it. 



5   Experimental Evaluation 

In this section we examine our algorithm and index structure on the performances of 

sliding window skyline computation. Following well-established methodology set by 

previous research on skyline algorithms [12, 13, 14] we choose to use the following 

three data distributions: independent, correlated and anti-correlated. In this section we 

want to see simulation runtimes for different cardinality (i.e. the number of readings) 

and different sizes of time windows. Shorter runtime means less processing at every 

sensor node in the network, and therefore smaller consuming of battery power which 

results in longer lifetime of the network. 

The following setup was used in experiments: We created synthetic datasets and 

vary the cardinality from 10 thousands to 1 million. We fixed dimensionality to 2, and 

used 2 different sizes of the time window. The first size was 5000, and the second was 

10 percent of the cardinality. Experiments were run in Java on a PC with 2.8 GHz 

Pentium Processor and 1GB of main memory.   
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Figure 2 - Results of Experiments 

In Figure 2 we can see the results of the experiments, where n is the cardinality. 

We conclude that there is no significant difference in runtime for the independent and 

correlated datasets. We see that for larger cardinalities there is slight increase in the 

runtime for window wb, which has the size of 10 percent of the cardinality. This is 

expected, because skylines live longer in the case of larger window sizes, and 

therefore the number of readings in the index is larger. For the anti-correlated dataset, 

we see that the runtime is more than one order of magnitude longer. This is expected, 

because many readings are skylines in the anti-correlated dataset. 

Morse at al. [14] did an extensive evaluation of different algorithms for continuous 

skyline computation. For the independent and correlated datasets the runtime of our 

algorithm is one order of magnitude smaller (0.1 s comparing to their 1 s for 

cardinality 5000), while for the anti-correlated dataset our algorithm is equally fast to 

their algorithm. They are using R
*
-trees and Quadtrees for indexing of skylines (and 

other readings). We suppose that our approach is faster for continuous skyline 

computation over sliding windows because we store skylines (and other readings) 

directly to the index as its nodes, while Morse at al. are storing them as end-nodes 

(i.e. leaves) of used structures. On the other hand, the memory consumption should be 

lower in our approach, because of the same reason. 



6   Related Work 

We have recognized two different topics of related work for our subject: usage of 

wireless WSNs in fire detection systems, and skylines computation in WSNs. 

Some papers exploit the essence of artificial neural networks to perform simple 

calculations at many organized single nodes in order to conduct complex data 

processing [7]. This approach also, they claim, reduces communication overhead and 

energy consumption. Some recent, also domestic, works combine video and network 

sensor monitoring [8] [9], but their approach doesn’t analyze the importance of data 

aggregation and suppression from sensors. They rely on algorithms for image analysis 

and looking of visual signs of forest fires, particularly forest fire smoke during the day 

and forest fire flames during the night. Some solutions employ the usage of mobile 

agents [8] [10] for efficient network exploration and fire detection, but the 

communication paths seem overused while agents tracking fire, which exhausts the 

sensor supplies (e.g. batteries). Some enhanced supply solutions exploit solar energy. 

Skyline computation in WSNs has received much attention recently [15, 16, 17]. 

Kwon at al. [15] propose an algorithm for in-network processing of skyline queries. 

Chen at al. [17] use advanced approach for continuous in-network skyline 

computation that employs hierarchical thresholds at the nodes. Xin at al. [16] propose 

an energy-efficient algorithm for continuous skyline computation. There are also 

many other paper related to continuous skyline computation, which are not related to 

WSNs [12, 14, 18]. We compared our algorithm with [14] in Section 5. 

7   Conclusion 

This paper proposes enhanced algorithm for continuous skyline computation in order 

to suppress collected data from wireless sensors that are monitoring environment for 

potential forest fires. In experimental evaluation, we showed that our approach is 

faster than other algorithms for continuous skyline computation over sliding windows. 

Because of the increased risk of forest fires in Croatia, especially during summer 

seasons, early detection and suppression of forest fires is crucial, in order to restrict 

their propagation. According to the Law of fire protection in the Republic of Croatia, 

National Protection and Rescue Directorate and its Fire Fighting Sector are obligated 

to propose Activity Program of special measures in fire protection on a yearly basis. 

One of the main goals of the program is development and implementation of new fire 

protection systems. This paper therefore represents useful and applicable contribution 

in that direction. 
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