
Presence@FER: An Ecosystem for Rich
Presence∗

Ivana Podnar Žarko, Mario Kušek, Krešimir Pripužić, Aleksandar Antonić

Faculty of Electrical Engineering and Computing (FER), University of Zagreb, Croatia
{ivana.podnar zarko, mario.kusek, kresimir.pripuzic, aleksandar.antonic}@fer.hr

Abstract— Presence information—expressing user willing-
ness and ability to communicate with other users across a set
of devices and tools—represents an essential prerequisite for
real-time communications. Although presence-related pro-
tocols have primarily emerged in conjunction with instant
messaging systems, presence is today viewed as a primer
service offered by contemporary unified communication
platforms, and is often referred to as the dial tone of the
21st century.

The paper presents Presence@FER, an ecosystem for
presence based on the Rich Presence Information Data
format (RPID) which comprises both XMPP and SIP-based
solutions for presence. Presence@FER supports context-
aware collection and exposure of rich presence information,
and offers fine-grained filtering of presence information
in accordance with user context and predefined policies.
It consolidates virtual, physical, and online presence into
a single rich-presence platform which relies on content-
based publish/subscribe service for efficient filtering and
dissemination of presence information. We show a number
of applications that can be built of top of such rich-
presence platform, and provide details of our prototype
implementation.

I. INTRODUCTION

We are witnessing a big step forward in the area of
communications system software with the rise of novel
platforms and tools for unified communications which
typically comprise voice/multimedia telephony, instant
messaging (IM), and e-mail. Such systems necessarily
integrate a presence service for managing and dissemi-
nating presence information generated by user contacts,
such that a user is aware of the current presence status
(e.g. available, busy, unavailable) prior to placing a call
or sending an instant message. Moreover, we are faced
with an abundance of novel context-aware and location-
based services such as Google Latitude, Facebook places,
or Foursquare, that also need to maintain and distribute
current presence and location information of their users
while taking into account user privacy settings.

In the context of presence services, presence is defined
as the willingness and ability of a user to communicate
across a set of devices with other users. Presence ser-
vice enables users (watchers) to subscribe to presence
information generated by their contacts (presentities), and
to receive their presence updates in real-time. However,
existing presence solutions typically ship all generated

∗Acknowledgment. This work was carried out within the research
project ”Content Delivery and Mobility of Users and Services in New
Generation Networks”, supported by the Ministry of Science, Education
and Sports of the Republic of Croatia.

presence updates from presentities to watchers, without
taking into account watcher context. Indeed, watchers are
not really interested to closely and continuously follow
their contacts, but would rather prefer to receive filtered
presence notifications at their own convenience. In addi-
tion, presentities would also like to control the disclosure
of their presence information to watchers, especially when
it comes to personal context-related presence information.
For example, Alice would like to receive a presence
notification when her contact Bob is nearby (e.g. in
the office next door, or on the same floor), in a good
mood, while his presence status is set to available. On
the other hand, Bob specifies that his current location
during office hours may only be shown to his boss, wife,
and a few colleagues. As Alice is on the list of Bob’s
colleagues, his presence status is sent to Alice including
the current location when conditions of her presence-
related subscription are met.

Presence information is event-based and generated in
an ad-hoc fashion. It is disseminated in real-time from one
source to many destinations following the publish/sub-
scribe communication model [1]. However, current pres-
ence service implementations typically support rather sim-
ple presence subscriptions capturing all presence updates
generated by a single presentity, and integrate only topic-
based publish/subscribe solutions [2]. This generates a
large number of messages that need to be transmitted both
from and to a watcher terminal while using up its battery
power rather quickly, and introduces serious scalability
problems within the core network due to presence-related
signalling [3]. Content-based publish/subscribe systems
offer a solution to the aforementioned problem as they
implement fine-grained filtering and efficient matching
algorithms that can greatly reduce the number of ex-
changed presence updates, and enable the definition of
personalized subscriptions, i.e., presence-related filters,
that can filter out presence messages for which there is
no current interest.

The need for novel context-aware presence solutions
has been identified in [4]. The authors propose a consol-
idated presence service for corporate environments, and
investigate the requirements and technologies needed for
implementation of such a service. In addition to deployed
industry standards and products, a number of specific
presence-related solutions has lately been published in
the literature [5], [6], [7], [8], which shows that the
management of sensitive personal presence information

is still challenging.
We present a presence solution which supports the Rich

Presence Information Data (RPID) format [9] including
context information, such as location, mood, and activity,
and extends the basic presence format, the Presence Infor-
mation Data Format (PIDF) [10]. Our presence solution
enables context-aware collection and exposure of presence
information because it enables a watcher to specify special
conditions that need to be satisfied such that he/she
receives a presence update, while a presentity defines the
policies for the collection and dissemination of presence
updates. It is in line with RFC 4661 [11] that specifies
content-based filtering rules associated with a presence
subscription.

We design a special rich presence service (RPS) for
handling RPID status messages and defining context-
aware presence filters. The RPS uses a content-based
publish/subscribe system for efficient matching of RPID
status messages to presence filters, and dissemination
of matching status messages to interested watchers. The
RPS is designed as an independent component that can
be integrated with the two standardized presence so-
lutions: Session Initiation Protocol (SIP) Presence and
Extensible Messaging and Presence Protocol (XMPP).
It can therefore be used as a gateway between the two
deployments. Please note that our solution may integrate
various presence sources, such as sensors and calendars
as sources of physical presence, virtual presence from
various communication channels, e.g., IP telephony/mul-
timedia, IM, and online presence from, e.g., Facebook,
LinkedIn, and Twitter. Furthermore, we present a number
of context-aware presence applications built on top of the
rich presence layer as a showcase of our presence plat-
form named Presence@FER. Therefore, we add context-
awareness and flexibility into the presence domain which
allows the development of a new class of applications
based on rich presence. This can potentially also solve
the scalability issues and overload with presence updates
as experienced by the end users.

The main contributions can be summarized as follows:

• We present a novel rich presence architecture for
context-aware dissemination and filtering of rich
presence information;

• We integrate our rich presence solutions with a num-
ber of physical, virtual, and presence sources and
design a number of presence-related applications;

• We provide a complete rich-presence solution as a
testbed for future rich presence applications.

The paper is structured as follows. Section II provides
an overview of standardisation efforts in the area of
presence management because a plethora of presence-
related standards and protocols exists today. Section III
gives an overview of the Presence@FER ecosystem,
describes our rich presence architecture, and briefly de-
scribes implemented example applications. We present
the details of our rich presence prototype in Section IV.
Related work in covered in Section V, and we conclude
the paper in Section VI.

II. PRESENCE-RELATED STANDARDS AND
PROTOCOLS

During the last decade, significant efforts have been put
into the process of presence service standardization by de-
veloping a suite of services collectively known as Instant
Messaging and Presence. The Internet Engineering Task
Force (IETF), being the main standardization body in this
domain, has adopted two competing protocol suites in
parallel, namely, SIP presence and Extensible Messaging
and Presence Protocol (XMPP).

Both SIP presence and XMPP are based on the ab-
stract model defined in RFC 2778 [12]. The presence
service model defines two types of clients: presentities,
which expose their presence state, and watchers, which
express interest in presence information related to a set
of presentities. A watcher interest can be expressed either
as a single request for the current presence status, or as
a continuous subscription to presence updates. Presence
information contains a set of presence tuples, where each
tuple includes status information (e.g. online, offline,
busy, away, do not disturb), and optionally a communica-
tion address and additional presence markup information.
To enable the exchange of presence information between
watchers and presentities, the presence service accepts
and distributes presence information to interested parties
using a presence protocol such as XMPP or SIP Presence.
RFC 3859 [13] defines a Common Profile for Presence
(CPP), i.e., semantics and data formats for presence
that different presence services must support to enable
basic interoperability and federation. It defines the ”pres
URI”, a unique identifier for watchers and presentities,
and the structure of three basic messages: subscribe (a
message from watcher to presence service specifying
watcher subscription to presence information generated by
a presentity), response (a response message to subscribe) ,
and notify (a message which carries presentities presence
information to a watcher).

SIP Presence is developed within the SIP for Instant
Messaging and Presence Leveraging Extensions (SIM-
PLE) Working Group1. It comprises a set of presence-
related protocols, data models, and data formats that
use SIP [14] as the underlying communication protocol.
SIP architecture and associated protocols are reused for
presence because SIP location services already maintain
certain user-related presence information in the form of
user registrations, and furthermore, SIP networks are
capable of routing requests from any network to the server
that holds the registration state for another user. Thus, SIP
routing inherently supports routing of watcher interests in
multi-domain networks.

The core SIP Presence protocol describing the usage
of SIP for routing presence-related subscriptions and no-
tifications of presence is defined in RFC 3856 [15]. RFC
3863 [10] defines the basic document format for repre-
senting presence information named Presence Information
Data Format (PIDF) in accordance with the abstract

1SIMPLE Working Group: http://www.ietf.org/dyn/wg/charter/simple-
charter.html

model defined in RFC 2778, while RFC 4480 [9] and
RFC 4481 [16] extend PIDF with rich presence attributes
and future/past presence information, respectively. The
Rich Presence Information Data (RPID) format [9] is
introduced to extend PIDF with context-based presence
information. While keeping the backward-compatibility
with PIDF, RPID defines additional presence attributes
to associate person, service, and device data elements
with rich presence information such as current activity
(e.g. lunch, meeting, vacation), mood (e.g. happy, an-
gry, impressed), location type (e.g. office, library, street),
and location property (e.g. noisy, dark, uncomfortable).
Our presence system uses RPID as the data format for
presence status representation.

XMPP is developed originally by the Jabber open-
source community and subsequently standardized by the
XMPP Working Group2. The core version of this protocol
is defined in RFC 3920 [17], while RFC 3921 [18] defines
its extensions. In brief, RFC 3920 defines the XMPP
network architecture which includes clients, servers, and
gateways to foreign network, and uses XML streams for
communication between network elements, while RFC
3921 defines a data format for presence stanzas, XML
elements within an XML stream, which are used to
convey presence-related information. A presence stanza
includes the following information: message source and
destination, presence state accompanied by an optional
free text note, and priority level of the source.

When comparing XMPP to SIP Presence, XMPP is
often promoted as being substantially simpler and with
a large user base. Estimates are that tens of thousands
of XMPP servers have been deployed around the globe
with more than 50 million users [19]. Conversely, SIP
Presence has been widely adopted in the telecom world
with the development of IP multimedia subsystem (IMS)
which uses SIP as the underlying signaling protocol. The
Open Mobile Alliance (OMA) defines a presence enabler
which manages and disseminates presence information
over the IMS presence architecture using SIP Presence
protocols [20].

Publish/Subscribe and Presence. Both SIP Presence
and XMPP community have recognized the need for
efficient filtering of presence updates, especially when
presence clients are used on mobile devices. However,
to our knowledge, there is limited or no support for
context-aware and fine-grained filtering of presence up-
dates in both presence worlds. RFC 4660 [21] defines the
operations performed by a a subscriber when declaring
filtering rules associated with a presence subscription,
while RFC 4661 [11] specifies the filter format. The two
RFCs assume that presence information is encoded as an
XML document, and define a filter with two elements:
The what element is an XPath expression and defines the
content to be delivered to the user. The trigger element
is used to identify the package-specific changes that a
resource has to encounter before the content is delivered
to the subscriber.

2XMPP Working Group: http://www.ietf.org/dyn/wg/charter/xmpp-
charter.html

Openfire

(XMPP server)

Bedework

(calendar)

Presence

server

(SIP/SIMPLE)
HSS

S-CSCF

I-CSCF

P-CSCF
Parlay X

Mobile

Publish/

Subscribe

Rich

Presence

Figure 1. The Presence@FER ecosystem

XMPP extensions XEP-0060 [2] and XEP-0163 [22]
define the publish/subscribe functionality for XMPP-
based presence solutions. XEP-0060 specifies the full
publish/subscribe protocol used to control which type
of extended presence data is sent to subscribers specif-
ically authorized to receive topic updates. In general,
the relationship between publishers and subscribers is
mediated by a topic service that receives publications,
delivers data to subscribers, and enables management of
entities authorized to publish or subscribe to the topic.
Since XEP-006 is quite complex and has not been widely
implemented, XEP-0163: Personal Eventing Protocol [22]
is introduced. It includes a simplified subset of pub-
lish/subscribe functionalities to allow easier deployment
of personal eventing services. Additionally, this protocol
defines the semantics for broadcasting state change events
associated with instant messaging and presence accounts.

III. RICH PRESENCE ECOSYSTEM

Presence@FER is an evolving system comprising both
SIP and XMPP-based presence solutions extended to
support rich presence. Fig. 1 depicts the components
of this ecosystem which represents a test-bed for our
rich presence applications. The ecosystem integrates an
Openfire XMPP server and our own implementation of a
SIP presence server (PS), as part of the IMS domain. We
have developed a rich presence component that accepts
presence updates in RPID format [9], and presence sub-
scriptions defined using XPath, in accordance with RFC
4661 [11]. The rich presence component relies on Mobile
Publish/Subscribe (MoPS), a content-based publish/sub-
scribe system for filtering and disseminating presence
updates optimized for mobile environments [23]. Pres-
ence@FER also includes applications that use and test
our rich presence implementation, such as IM provided
by the Openfire and SIP/SIMPLE presence servers, and
Bedework calendar system. The Parlay X server is used as
a gateway to a mobile phone network. Additionally, Pres-
ence@FER integrates virtual sources (calendar, XMPP
and SIP-based IM clients), online sources (Facebook,
LinkedIn, and Twitter), and physical sources (mobile
phones with built-in sensors) of presence information.

In this section we describe the details of our rich pres-
ence architecture, and give an overview of applications
built on top of this architecture.

A. Architecture

The components of our rich presence architecture are
given in Fig. 2. The rich presence service (RPS) is imple-
mented by two layers: 1) a rich presence layer that offers
a web service interface and can be accessed directly via
SOAP, and 2) publish/subscribe layer for dissemination
and filtering of presence updates in accordance with rich
presence subscriptions. It integrates a policy server for
handling watcher and presentity policies, and accepts
presence-related data from various sources. The RPS is
used by existing presence servers since they deal with
simple presence. The top layer of our architecture is
composed of applications that use the RPS either directly,
or through a presence server. Acquisition of presence-
related data from virtual sources such as sensors, calendar,
or Facebook, is integrated through the publish/subscribe
layer.

The publish/subscribe layer accepts presence-related
data from online, physical, and virtual sources directly,
such that each data source is extended by a MoPS pub-
lisher that publishes data objects according to the MoPS
publish/subscribe protocol, and subsequently filters and
delivers presence updates according to existing watcher
interests. Such design improves performance because
presence related data does not need to pass through the
two layers (rich presence and publish/subscribe layer) to
be matched against subscriptions. We have decided to
use two separate layers for the RPS implementation for
two reasons: 1) existing content-based publish/subscribe
implementations are optimized for efficient matching and
dissemination of publications, and 2) as publish/subscribe
implementations are distributed, a network of publish/sub-
scribe brokers can cope with high publication rate of data
sources and filter data objects close to data sources. We
have decided to use an independent RPS rather than to
integrate it directly into existing presence servers such
that our solution is generic, and can be integrated with
various presence domains and PS implementations. It can
therefore also be seen as a gateway between presence
domains using various protocols, while the RPID format
represents the common language.

The policy server is needed to handle watcher and pre-
sentity policies. For example, a presentity can set different
levels of presence visibility to different groups of watchers
such that, e.g., his/her current location is visible only to
family members, while current activity and location is
visible to colleagues during office hours. Watcher, on the
other side, can also define policies for receiving presence
updates such that, e.g., presence notifications are blocked
during an oral presentation, or presence updates from
friends are blocked during office hours. As in current
presence systems, policies can also be set in relation to
particular watcher priority, and additionally, watchers may
define preferable means (devices and applications) for
notification delivery. Such policies need to be transformed
to specific subscriptions/filters that are subsequently pro-
cessed by the publish/subscribe layer.

For policy implementation, we are considering
XACML (eXtensible Access Control Markup Language),

a general purpose access control policy language ratified
by the OASIS standards organization 3. This declarative
language is based on the abstract model for policy en-
forcement defined by IETF in RFC 2753 and RFC 3198.
Besides policy syntax, XACML also defines the semantics
for processing of such policies. Currently, we use policies
to define access rights to presence information between
watchers and presentities.

Applications can interact with the RPS either directly
over SOAP, or through XMPP or SIP PSs. PSs need to
be extended to interact with the RPS, e.g. the Openfire
server needs a special plugin to communicate with the
RPS. When using native clients that do not support the
RPID format, contextual data from a RPID document can
only be displayed as a textual message in addition to
presentity state, while watchers can define rich presence
subscriptions only directly through the RPS interface. We
are also considering the implementation of rich presence
clients that support the RPID format and enable watchers
to define their presence subscriptions in a simple fashion.

An example interaction between a watcher, presen-
tity, and our RPS for the SIP Presence deployment is
depicted in Fig. 3. A watcher user agent (UA) sends
a subscribe message to the PS. This message carries a
filter in its body, and the PS forwards it to the RPS
via SOAP. The RPS responds with a response message
carrying subscription identifier which is further on used
to identify messages for this particular subscription, and
subsequently the PS sends a 200 OK message back to
the watcher UA. When a presentity publishes its presence
status in RPID over the RPS, if this message matches
the watcher filter, a notify message carrying the RPID
document is forwarded to the watcher UA. It responds
with a 200 OK message. Please note that the described
scenario and message format complies with the core SIP
Presence protocol defined in RFC 3856 [15].

Further details regarding our RPS prototype implemen-
tation are given in Section IV.

B. Example Applications

As rich presence information is a source of context
information, it can be used to implement various context-
aware services. Please note that a presentity is not neces-
sarily only human: any resource, e.g., a projector, laptop,
inventory item, or pdf document, represents a presentity.
We are considering the following sources of rich presence
information: user terminals and applications that can,
e.g., infer that a user is watching a movie on his/her
smart phone, sensors located either in the environment
or on user terminals that can provide user location, or
information systems, e.g., showing that an item is on an
inventory list. User calendars are also sources of pres-
ence information as they provide information regarding
planned activities. However, please note that true physical
presence may differ from the one which is planed, and
therefore a user activity can be set to ”in a meeting” when
he/she arrives to the particular meeting location.

3http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=xacml

Presence server

XMPP

server

IMS core

(SIP

Presence)

Policy server

Rich presence service

Publish/subscribe layer

Acquisition of presence-related

data

(online, physical, virtual presence)

Facebook,

Twitter
Sensors

Rich presence layer

Applications

Calendar

SIPXMPP

SOAP

PUB/SUB

PUB/SUB

IM

(XMPP client)

Presence-

enhanced

calendar

IM

(SIP client)

Meeting

scheduller
� VoIP

Figure 2. Rich presence architecture

Watcher UA
Presence

Server

Rich Presence

Service

SIP Proxies

SUBSCRIBE (pres URI, filter)

PUBLISH

(presence

status)

200 OK

NOTIFY + RPID

200 OK

Presentity

UA

PUBLISH

(presence

status)

SUBSCRIBE

(pres URI, filter)

RESPONSE

(subscriptionID)

NOTIFY + RPID

Figure 3. A watcher subscribes to the rich presence layer (compatible
with SIP Presence)

Hereafter we present a few applications that have been
build on top of our RPS.

The first application infers user context by using sen-
sors built into a mobile phone with the Android OS. When
the mobile phone is turned upside down such that its
screen is facing the floor (recognized by a gyroscope or
accelerometer identifying the swift movement), the user
status is set to ”unavailable”. This application is integrated
with a native XMPP client connected to an Openfire
server.

The second application is the policy-enabled rich pres-
ence application developed for Android phones. A user
can define policies which change its presence status such
that they depend on the current time of day, location, and
activity. For example, Fig. 4 shows a screen shot of a
user terminal that is currently at Unska street in Zagreb,
which is the address of the Faculty of EE and Computing
(FER). The policy states that on Wednesdays between
9AM to 10AM if the user is located near FER, his/her
status should be set to ”do not disturb” and activity to ”in
lectures”.

The third application is the calendar-driven presence
application that checks the calendar information of a

Address

 Day of Week

 Time of Day

 Presence

 Status Message

Figure 4. Policy-enabled rich presence application

user and changes his/her presence status in accordance
with calendar events. Therefore, the status is changed
implicitly. Fig. 5 shows an example when a user named
”test” changes his/her presence to ”Do Not Disturb -
CALENDAR”. This implies that his/her presence will
currently be triggered by calendar events. Therefore, the
other user ”admin” sees his/her state as busy, because the
current calendar event is entitled ”meeting”.

The last application is a message service based on
online presence information. It enables a user to send a
message to another user identified by a unique identifier,
while the application is responsible for delivering the
message using the most appropriate means. In particular,
it checks the current user status at the following services:
Openfire, Facebook, LinkedIn, and Twitter. If the user
is online in any of the services, this service is chosen
for message delivery. Since Twitter does not support
presence, our application checks whether the user has
twitted in the last few minutes. If the user is not available
on any of the listed systems, the message is finally sent as

!

Available

 Busy

user user

Figure 5. Calendar-driven presence

an SMS message and forwarded to the network provider
through the Parlay X gateway.

IV. RICH PRESENCE SERVICE (RPS) PROTOTYPE
IMPLEMENTATION

According to the architecture defined in Section III-A,
the RPS prototype implementation consists of the follow-
ing subsystems: a rich presence layer, publish/subscribe
layer, and policy server. They are presented in Fig. 6
together with their interfaces showing the main methods
offered by each subsystem.

The rich presence layer represents an entry point for
distributing rich presence information in RPID format,
and relies on the underlying publish/subscribe layer for
efficient dissemination of rich presence updates. On one
hand, it accepts rich presence subscriptions defined either
directly by end users, or generated by presence-enabled
applications that create new rich presence subscriptions
on demand. On the other hand, the rich presence layer
receives presence status updates in RPID format from
various sources, such as IM clients extended with rich
presence support, presence servers converting PIDF to
RPID, or other rich presence sources.

Methods offered by the rich presence layer are the
following:

• registerWatcher: registers a watcher with a
listener object which can receive notify messages
from the rich presence layer;

• registerPresentity: registers a presentity;
• subscribe/unsubscribe: creates/deletes a

watcher subscription; and
• publish: publishes a presence update in RPID

format.
Subscriptions are defined in the form of an XPath

query or conjunction of XPath queries. Listing 1 shows an
example rich presence subscription defined using XPath.
The subscription is related to Alice identified by her pres
URI alice@tel.fer.hr which states that a presence
update should be sent when her location equals library.

Listing 1. An example XPath subscription
/presence[@entity=alice@tel.fer.hr]
/presence/tuple[@location-info=library]

Rich presence status updates are encoded using the
RPID format. An example RPID publication is given
in Listing 2 which defines a presence status for

alice@tel.fer.hr as open, and her location is
library. A RPID document is transferred to the rich
presence layer using the method publish, and after a
matching subscription is found, the same document is
transported from the rich presence layer to the application
layer and adequate listener using the method notify.

Listing 2. An example RPID publication (notification)
<?xml version="1.0" encoding="UTF-8"?>
<presence xmlns="urn:ietf:params:xml:ns:pidf"
xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"
xmlns:lt="urn:ietf:params:xml:ns:location-type"
xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"
entity="alice@tel.fer.hr">
<tuple id="bs35r9">
<status>
<basic>open</basic>
</status>
<priority>3</priority>
<location-info>library</location-info>
<timestamp>2011-01-27T16:49:29Z</timestamp>
</tuple>

</presence>

Please note that the rich presence layer also integrates
an XML database to store all subscription and publica-
tions. The database is used as a persistent storage and
deals with one-time watcher queries.

The publish/subscribe layer is a content-based publish/-
subscribe system optimized for mobile environments, and
frequent disconnections of publishers and subscribers. It
uses its own publish/subscribe protocol and syntax for
publications and subscriptions. Subscriptions are defined
as a conjunction of predicates, where each predicate is
composed of an attribute, operator, and value. A publi-
cation is a simple hashtable with (attribute, value) pairs.
Such definition of publications and subscriptions on the
publish/subscribe layer enables the implementation of
efficient algorithms for matching incoming publications
to numerous subscriptions organized in trees based on
the covering property between the subscriptions. Since the
publish/subscribe layer offers a remote service interface,
presence sources can publish presence updates directly
through this interface, and thus avoid the conversion from
the RPID to publish/subscribe format.

Our policy server is used to store policies defined
by presentities granting access rights to watchers and
groups of watchers. Prior to delivery of a matching RPID
document to a watcher, the rich presence layer checks
whether the priority associated with a watcher is sufficient
(greater or equal to the priority defined in the message)
to forward it further. The method checkPolicy is used
for this purpose. The policy server stores two types of
policies in the XML database. The first one contains all
subscribers and their membership in user groups. The
second one associates user groups to access rights.

Fig. 7 depicts a sequence diagram showing an in-
teraction within the RPS subsystems. A watcher first
registers with the rich presence layer, and provides its
listener object that is used later on to receive match-
ing presence notifications from the rich presence layer.
The rich presence layer responds with a unique watcher
identifier, and creates a new subscriber object associated
with this watcher. When a watcher wishes to subscribe,

Publish/Subscribe Layer

Rich Presence Layer

Application Layer

subscribe

(XMLDocument)

publish

(XMLDocument)

notify

(XMLDocument)

subscribe

(watcherID, filter)

publish

(RPIDDocument. presentityID)
notify

(RPIDDocument)

registerWatcher

(presenceListener)

Policy Server

checkPolicy

(RPIDDocument, watcher ID)

Figure 6. RPS design

Rich Presence

Layer
Policy ServerXML database

Publish/Subscribe

Layer

Found matching

subscription!

subscribe

(watcherID,

XPath_subscription) store

(XMLSubscription)

subscribe

(XMLDocument)

subscriptionID

registerWatcher

(listener)

watcherID

registerPresentity()

presentityID

publish(RPIDDocument, presentityID)

store(RPIDDocument)
publicationID

WatcherPresentity

publish(XMLDocument)

notify(XMLDocument)

checkPolicy(RPIDDocument, watcher ID)

notify(RPIDDocument)

Figure 7. Sequence diagram showing an interaction within the RPS

it sends a subscription request containing an XPath sub-
scription and its identifier. The rich presence layer stores
the subscription in the form of an XML document in
its XML database, converts the XPath subscription into
and XML document recognized by the publish/subscribe
layer, and uses the watcher subscriber object to submit
the XML subscription to the publish/subscribe layer. Later
on, a presentity registers with the rich presence layer and
receives a unique presentity identifier. Next, it publishes
its presence information in the form of an RPID document
accompanied by its unique identifier. The rich presence
layer stores the subscription in the form of an XML
document in its XML database, converts the RPID doc-
ument into and XML document modeling a publication
as recognized by the publish/subscribe layer, and sends it
to the publish/subscribe layer. Since the XML document
matches a previously defined subscription, the publish/-
subscribe layer notifies the corresponding subscriber at
the rich presence layer with the matching document. After
checking the policy associated with the subscriber, the
rich presence layer converts the received document into

the RPID format, and, finally, forwards it to the watcher
listener.

V. RELATED WORK

Presence management is currently a hot research topic,
both in industry and academia. We have already surveyed
a number of presence-related standards in Section II, and
in this section we compare recent research results and
prototype systems to Presence@FER.

A feasibility prototype of a presence service based on
a RESTful web service architecture is presented in [5].
This service is used as a gateway and integrator for
online sources of presence information (MSN, Yahoo, and
Gmail), and is therefore comparable to our solution for
integrating Facebook, LinkedIn, and Twitter into the Pres-
ence@FER. However, we focus on rich presence, while
the authors in [5] use simpler PIDF format for presence
implementation, and investigate whether RESTful web
service architecture is adequate for the implementation
of a ”universal presence service”.

Another paper by the same group of authors presents a

lookup service to dynamically discover persons or phys-
ical objects within an IMS-based presence system [6].
While SIP presence and XMPP are designed such that
a watcher necessarily needs to know the identifier of a
presentity it wants to follow, the authors have extended the
format of publish and subscribe messages such that they
define abilities and affiliations which are used for finding
the right presentity. However, they are not using the stan-
dardized rich presence format which also fits this purpose,
while the implementation is described as query based,
instead of the standard publish/subscribe interaction. Our
architecture can also be used to implement such lookup
service on top of RPS, while a watcher could specify
continuous queries when looking for a person/object with
particular characteristics and presence status.

A system which relies on a rich presence implemen-
tation is presented in [7]. It is a social networking site
which enables users to collaborate and participate in
common activities based on their interests and current
context-aware presence status. We argue that our rich
presence implementation can be used as the underlying
infrastructure for developing such context-aware social
network applications. Another related system is the No-
matic prototype [8] which is designed to automatically
infer users’ place, activity, and availability from sensors
on their terminals. This system monitors user presence
over time and learns their context (place, activity, mood)
based on prior behavior. This solution is orthogonal
to our system, and we would largely benefit if such
machine learning algorithms would be integrated within
Presence@FER.

VI. CONCLUSION

The paper presents Presence@FER, an ecosystem for
management of rich presence information which includes
context, e.g. user activity, location, mood, and interest.
The system includes an original implementation of a
rich presence service which supports the publish/sub-
scribe interaction model, and enables efficient content-
based filtering and dissemination of presence information
such that watchers are enabled to define context-aware
filters for presence updates, while presentities may control
the disclosure of rich presence updates to watchers. We
include a number of applications developed on top of
the rich presence service to demonstrate its functionality.
Presence@FER is an evolving system, and we plan to
further extend the functionality and improve performance
of the core system, while designing novel exciting rich
presence applications.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec,
“The many faces of publish/subscribe,” ACM Comput. Surv.,
vol. 35, pp. 114–131, 2003.

[2] P. Millard, P. Saint-Andre, and R. Meijer, “XEP-0060: Publish-
Subscribe (v1.13),” XMPP Standards Foundation (XSF), July
2010. [Online]. Available: http://xmpp.org/extensions/xep-0060.
html

[3] P. Bellavista, A. Corradi, and L. Foschini, “IMS-based presence
service with enhanced scalability and guaranteed QoS for interdo-
main enterprise mobility,” Wireless Commun., vol. 16, no. 3, June
2009.

[4] M. Hauswirth, J. Euzenat, O. Friel, K. Griffin, P. Hession, B. Jen-
nings, T. Groza, S. Handschuh, I. P. Zarko, A. Polleres, and
A. Zimmermann, “Towards consolidated presence,” in The 6th In-
ternational Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom 2010, Chicago,
Illinois, USA, October 2010, invited paper.

[5] C. Fu, F. Belqasmi, and R. Glitho, “RESTful web services for
bridging presence service across technologies and domains: an
early feasibility prototype,” IEEE Commun. Mag., vol. 48, pp. 92–
100, December 2010.

[6] Z. Zhu, F. Belqasmi, C. Fu, and R. Glitho, “A case study of a
presence based end-user lookup service for the dynamic discovery
of entities across technologies and domains,” IEEE Commun.
Mag., vol. 48, pp. 82–89, November 2010.

[7] N. Banerjee, D. Chakraborty, K. Dasgupta, S. Mittal, S. Nagar, and
Saguna, “R-u-in? - exploiting rich presence and converged commu-
nications for next-generation activity-oriented social networking,”
in Proceedings of the 2009 Tenth International Conference on
Mobile Data Management: Systems, Services and Middleware, ser.
MDM ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 222–231.

[8] D. J. Patterson, X. Ding, S. J. Kaufman, K. Liu, and A. Zaldivar,
“An ecosystem for learning and using sensor-driven IM status
messages,” IEEE Pervasive Computing, vol. 8, pp. 42–49, October
2009.

[9] H. Schulzrinne, V. Gurbani, P. Kyzivat, and J. Rosenberg,
“RPID: Rich Presence Extensions to the Presence Information
Data Format (PIDF) (RFC 4480),” IETF, July 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4480.txt

[10] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr,
and J. Peterson, “Presence Information Data Format (PIDF)
(RFC 3863),” IETF, August 2004. [Online]. Available: http:
//www.ietf.org/rfc/rfc3863.txt

[11] H. Khartabil, E. Leppanen, M. Lonnfors, and J. Costa-Requena,
“An Extensible Markup Language (XML)-Based Format for
Event Notification Filtering,” IETF, September 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4661.txt

[12] M. Day, J. Rosenberg, and H. Sugano, “A Model for Presence and
Instant Messaging (RFC 2778),” IETF, February 2000. [Online].
Available: http://www.ietf.org/rfc/rfc2778.txt

[13] J. Peterson, “Common Profile for Presence (CPP) (RFC 3859),”
IETF, August 2004. [Online]. Available: http://www.ietf.org/rfc/
rfc3859.txt

[14] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP:
Session Initiation Protocol (RFC 3261),” IETF, June 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3261.txt

[15] J. Rosenberg, “A Presence Event Package for the Session
Initiation Protocol (SIP) (RFC 3856),” IETF, August 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3856.txt

[16] H. Schulzrinne, “Timed Presence Extensions to the Presence
Information Data Format (PIDF) to Indicate Status Information
for Past and Future Time Intervals (RFC 4481),” IETF, July 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4481.txt

[17] P. Saint-Andre, “Extensible Messaging and Presence Protocol
(XMPP): Core (RFC 3920),” IETF, October 2004. [Online].
Available: http://www.ietf.org/rfc/rfc3920.txt

[18] ——, “Extensible Messaging and Presence Protocol (XMPP):
Instant Messaging and Presence (RFC 3921),” IETF, October
2004. [Online]. Available: http://www.ietf.org/rfc/rfc3921.txt

[19] ——, “XMPP: lessons learned from ten years of XML messaging,”
Comm. Mag., vol. 47, no. 4, pp. 92–96, 2009.

[20] Open Mobile Alliance, “OMA Presence SIMPLE Specification,
v.1.1: OMA specification of the presence enabler,” June 2008.
[Online]. Available: http://www.openmobilealliance.org/Technical/
release program/presence simple v1 1.aspx

[21] H. Khartabil, E. Leppanen, M. Lonnfors, and J. Costa-Requena,
“Functional Description of Event Notification Filtering,” IETF,
September 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4660.txt

[22] P. Saint-Andre and K. Smith, “XEP-0163: Personal Eventing
Protocol (v1.2),” XMPP Standards Foundation (XSF), July 2010.
[Online]. Available: http://xmpp.org/extensions/xep-0163.html

[23] I. Podnar and I. Lovrek, “Supporting mobility with persistent
notifications in publish/subscribe systems,” in In Proc. of the 3rd
Int. Workshop on Distributed EventBased Systems. ACM Press,
2004, pp. 80–85.

