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Abstract—For delivering multimedia services over (wireless)
networks it is important that the mechanisms which negotiate
and optimize content delivery under resource constraints take
into account user perceived quality in order to improve user
satisfaction. Within the scope of the IP Multimedia Subsystem
(IMS) architecture a novel application server may be added
which handles multi-user multi-flow Quality of Experience (QoE)
negotiation and adaptation for heterogeneous user sessions.
Based on a mathematical model, which takes into account
the characteristics of audio, video and data sessions for QoE
optimization, we develop several optimization algorithms to be
used by the application server to maximize overall user defined
QoE parameters for all ongoing multimedia sessions, subject to
network resource constraints. Our results show that a greedy
based approach provides a reasonable compromise in terms of
run-time and sub-optimality for the overall QoE based resource
allocations.

Index Terms—multimedia communication, communication sys-
tems, resource management, algorithm, IMS

I. INTRODUCTION

In current networked multimedia systems, dynamic re-
source management and negotiation are based on measurable
quantitative parameters such as bandwidth, delay, jitter, and
loss ratio, usually referred to as Quality of Service (QoS).
Recent trends in designing and evaluating multimedia systems,
however, are becoming more user-centered, because the user
ultimately judges the quality he experiences. The impact of
resource limitations on user experience is highly related to
media type and codec involved. For example, losing an I-
frame in an H.263 video stream has more severe implications
than losing a B-frame, or, reducing the data-rate of a HDTV
video stream by 40 kbps has less impact than reducing its
audio flow by the same amount. This paradigm shift leads
to a system design focusing on the Quality of Experience
(QoE) as perceived by the user of a given service. As a
consequence, for dynamic negotiation and allocation of re-
sources across all users and all sessions, the ultimate goal
for a network service provider should be to control network
resource usage while at the same time maximizing the QoE.
Such optimization is difficult to achieve as (possibly many)
diverse applications, and corresponding multimedia sessions,
have to be supported concurrently with varying levels of
resource demands. A resource optimization for a variety of
users and sessions requires metrics that quantify the QoE of

a user for a session, and a mapping process between network
and application parameters onto those metrics. Further more,
a negotiation process is needed to take into account limited
resources and willingness of users to accept reduced QoE in
case of resource shortage. Finally, the process of deciding
which media flows should operate at what resource level in
order to maximize the user perceived QoE translates into a
constrained optimization process.

We address these issues within the scope of the IP Multi-
media Subsystem (IMS) [1]. This paper builds upon the idea
of deploying a QoS Matching and Optimization Application
Server (QMO AS) in the IMS, presented in more detail in
[2] [3]. The QMO AS provides advanced parameter matching
and optimization procedures throughout the QoS negotiation
process. QMO AS uses SIP over standard IMS interfaces and
introduces additional knowledge about the user and service by
using respective XML-based “profiles”. While the initial QMO
AS allows an adaptation of a single user session composed
of multiple media flows, it does not consider optimizing
resources among multiple sessions, and its operation is limited
to “traditional” QoS parameters without considering QoE. In
this paper, we extend the functionality of the QMO AS towards
QoE based negotiation and optimization, while taking into ac-
count multiple concurrent sessions, belonging to various (types
of) multimedia applications. We develop a mathematical model
that characterizes overall user satisfaction under resource con-
straints in order to yield a set of configurations of multiple
user sessions which maximizes the overall user perception
of service quality across all domain users. This is achieved
by prioritizing users and services based on contracts between
users and providers, user preferences and budget limitations.
As such constraint optimization problem is hard to solve,
we develop, implement and test two heuristic optimization
algorithms which allow the calculation of near optimal service
configurations across multiple domain sessions with limited
CPU requirements.

After a brief overview of related work in Section II,
Section III summarizes the proposed extended QMO AS
functionality. Section IV presents the mathematical model,
and Section V describes the proposed algorithms. Section VI
presents the evaluation of the proposed algorithms illustrated
by an example. Section VII concludes the paper.



II. RELATED WORK

Application-driven multimedia resource optimization found
in literature mainly focuses on networks having a single
service type (e.g., VoIP or video delivery) [4]. In real systems,
multiple users running diverse services coexist, leading to a
diverse set of requirements to be optimized regarding user
perceived quality. As the impact of resource constraints on
service quality is service-dependent, optimizing a service
towards limited resources has been tackled mainly in the form
of throughput maximization (e.g. [5]). This leads to suboptimal
performance for applications sensitive to delay and loss, such
as live video conferencing and IP telephony, and consequently,
to suboptimal user perceived quality.

Regarding metrics for QoE management, Mean Opinion
Score (MOS) has been used in many works to characterize
user satisfaction for different types of streamed media content,
mostly audio and video. The MOS related utility functions
adopted for the purposes of this work are described next.

A. Streaming Video MOS related Utility Function

We use video distortion as an input to derive user utility
for streaming video [6]–[8]. Several proposals address the
assessment of video quality such as peak signal-to-noise ratio
(PSNR) parameter, which is typically used to model video
distortion function and is based on mean square error (MSE).
PSNR is typically used to provide objective measurement of
video quality because it is simple to calculate and correlates
nicely with subjective quality [9]. In the model adopted
from [10], the end-to-end video distortion D is composed of
distortion at the source caused by video coding, DS , and the
channel distortion caused by packet loss, DL, and calculated
as follows:

D(R, π) = DS +DL = α ∗Rξ + β ∗ π (1)

where R denotes the data rate of the video codec, π the
packet error probability, and α, β ∈ R+ and ξ ∈ [−1, 0] are
model parameters as defined by the properties of the encoder
and video material. In contrast to [10], we do not assume a
single QoS class to be used for the streamed video but allow
multiple QoS classes. Therefore, target data rates and packet
error probabilities can be defined for various QoS classes,
for example, through a service configuration using a service
profile.

B. Calculation of audio MOS

The MOS value for the audio model can be calculated
according to the R-factor [11], where MOS is expressed as:

MOS = 1 + 0.035R

+ 7 ∗ 10− 6R(R− 60)(100−R) (2)
R = 94.2− Ie − Id (3)

Here, the parameter Id denotes the end-to-end delay impact
on user quality perception, while the parameter Ie reflects the
impact of the packet loss on perceived quality. Id and Ie can
be estimated by using fitting mechanisms.

C. Calculation of data MOS value

We use MOS based function to evaluate the quality of data
session based on a FTP download model, according to [12]:

MOS = a ∗ log[b ∗R ∗ (1− PEP )] (4)

where a and b are again model parameters, R is the flow rate,
and PEP parameter represents the packet loss ratio.

The design of our extended QMO AS is based on MOS
mapping functions described above, and the development of
better QoE metrics and mapping functions is out of scope
of this article. The proposed approach, however, is generic
enough that any applicable utility functions could be used,
including those for other media types, and other metrics. The
works [9], [13]–[15] take into account different generic net-
work and media specific parameters and yield MOS estimation
formulas based on the assessment provided by the set of
independent human testers. Various QoE metrics have been
proposed for images [16]. A summary of objective perceptual
video quality metrics standardization may be found in [17].

III. OVERVIEW OF QMEX AS FUNCTIONALITY

The main goal of the QMEX AS (Quality of Multimedia
Experience Application Server) is to assist the network oper-
ator in the optimization process in the network. In contrast to
standard QoS based resource management, QMEX AS tries
to balance resources among different and heterogeneous user
multimedia flows so as to maximize the overall user experi-
enced quality, subject to available resources in the domain. It
thus retains a global view of the system resources and their
current consumption, and performs global optimization of all
currently active sessions within the domain based on a unified
QoE metric. It also assists in negotiating user perceived quality
levels for audio, video and data sessions within a domain while
taking into account resource constraints, network utilization,
and operator policies. This includes QoE and QoS parameter
matching and optimization algorithms during session estab-
lishment, as well as during the course of a session, if needed.
The goal of the negotiation process is to determine a set of
feasible service parameters and select those which optimize
a given objective function under given resource constraints.
As an example, we develop an optimization function which
allows to maximize the global system utility expressing the
level of satisfaction of all users with provided service levels
within the domain. As the system design is flexible, different
objective functions can be supported such as to maximize the
fairness among competing flows.

A. QMEX AS processes to determine final service profile

A high-level view of the processes by which QMEX AS
determines the final service profile is illustrated in Figure 1.
During the session initiation process, the QMEX AS receives
the Client Profile which is composed of the constraints im-
posed by a given user terminal, the characteristics of user’s
access and the user’s personal preferences. For each ses-
sion to be established, the Client Profile is matched with
the corresponding Service Profile, describing requirements of



Fig. 1. Overview of the QMEX AS processes

the requested service, and with constraints imposed by the
network operator (e.g., operator policy, resource limitation).
This matching process yields a set of feasible service configu-
rations. The negotiation process enables the end points to agree
upon a subset of common service configurations supported
by both end points and the network operator. Without the
QoE enhancement (as described in [3]), the set of agreed-upon
session configurations led to the optimization process, which
generated the final service profile. With the proposed QoE-
based enhancement, the pre-optimization process derives the
utility values corresponding to different service configurations
based on utility functions that allow to express user perceived
quality (shown as “MOS curves”). This approach relieves
the service provider from knowing the effect of a particu-
lar service configuration on the user perception of service
quality under given network conditions. The set of negotiated
service configurations mapped with utility values calculated
during the pre-optimization process serves as an input into
the optimization process that tries to maximize the degree of
satisfaction of all users within the domain. Here, QMEX AS
calculates the optimal utilization of network resources which
would maximize user perceived quality under given network
conditions. Furthermore, the optimization process takes into
account restrictions imposed upon single user session by
client equipment, access and preferences as well as network
operator policies and service provider requirements affecting
multiple sessions. Finally, the session establishment finishes
with resource allocation procedures. An important aspect of
the QMEX AS is the usage of the MOS as a measure for
user perceived quality metric, which is applied in a unified
way to audio, video and data download sessions. Such unified
MOS metric allows the QMEX AS to easily optimize across
multiple applications, using, for example, the average MOS,
or overall MOS, as the optimization criterion.

B. QoE based Utility Functions

In our system model, each media flow within a session is
represented with the set of operating points that is passed to
a global optimization engine as input. The operating point

indicates the amount of resources required to attain a certain
value of utility. The result of the optimization process will be
for each user session and flow a given operating point, which
in combination yields the maximum value of the system utility
under given resource constraints. The utility assigned to an
operating point indicates the degree of user satisfaction with
the provided service, and thus, the level of achieved QoE. We
leverage current research to evaluate the impact of network
and coding schemes on user perceived quality by focusing on
an overall MOS value as a sole optimization criterion. The
MOS parameter by definition provides a numerical indication
of the subjective user quality perception of received media on
the scale from 1 to 5, where 1 stands for the lowest perceived
quality, and 5 represents the highest one.

The service provider sends additional specific information
to the QMEX AS about the media content that is offered along
with a utility function per media flow to be used which allows
the QMEX AS to calculate MOS related utility of different
flow operating points in the pre-optimization process. This can
be implemented using e.g. SIP with SDP extensions for the
utility function. The utility function should allow a mapping
of system resource availability indicated through parameters
such as data rate, packet loss, and delay, to the flow’s QoE
as received by the user. The utility functions are later used by
the QMEX AS to dynamically maximize QoE across all users
and flows, subject to constraints imposed by various parties
(e.g., network operator, service provider, or user).

To be able to calculate the impact on arbitrary resource
constraints such as allocated bandwidth, packet loss rate, etc.,
on user perceived quality, the QMEX AS will be given a
set of rate-loss-distortion mappings during a session setup
at which distortion of the video content has been measured
off-line using different parameter settings for packet loss and
bandwidth. The rationale is that the distortion of video content
comprised of fast moving scenes is under greater affect of
packet loss than video composed of static scenes. Therefore,
if a packet will be dropped, the user utility will be impacted
in a different way depending on the motion within the scenes.
Here, we refer an interested reader to [12], [9] for more detail.
The QMEX AS can use curve fitting techniques to derive
and store missing operational points. The content provider is
thus able to select for the video to be transmitted such rate-
loss-distortion mapping, which depends on the type of video
content. These mappings are then signaled to the QMEX AS
to locally store the definition of those parameterized distortion
functions. Given those model parameters, the MSE distortion
can be obtained for every rate/loss combination.

IV. FORMULATION OF GLOBAL OBJECTIVE FUNCTION

The QMEX AS uses a mathematical model for optimization
of multiple user supplied utility functions based on MOS
as defined above which relates between a user (session) u,
the respective media flow i, and a given operating point j.
A given operating point can be associated with the level of
resources required to satisfy the media flow. For example,
a video flow can be encoded at 3 different visual quality



levels (operating points) leading to three streams with different
bandwidth requirements and possibly different resilience to
errors. For each such operating point, impact of packet loss
may be different but can be determined beforehand, and its
utility value calculated as described above.

Let U denote the set of active user sessions. Each session
may consist of one or more media flows (audio, video, data).
As the contents and the directions of flows need not be identi-
cal for all flows of the same type, the discrete set of operating
points associated with each flow may vary. A resource vector
ruij = (ruij1, ..., ruijq, ..., ruijQ+C+K) describes resource
consumption at a particular operating point needed to achieve
a certain utility level. Each operating point of a given flow
within the system, which belongs to a particular user session,
is assigned to exactly one resource vector. The first Q elements
of this vector correspond to the bandwidth allocated in each
of the Q network QoS classes. Our model assumes that at
any given point in time, one media flow content can not be
simultaneously streamed in more than one QoS class, and
thus, only one of the first Q elements of resource vector can
be greater than zero. The next C elements jointly represent
consumption of a single user resource (e.g., CPU, memory,
budget), while the remaining K elements pertain to resources
of the network operator (e.g., a total number of flows within
one QoS class) or the service provider (e.g., a total number of
users being simultaneously served).

Each QoS network class is characterized with delay, jitter
and loss parameters as well as the total bandwidth that the
network provider has given to the service provider within a
particular class. The service provider may offer the user to
transmit his flow traffic with higher rates and higher loss
or lower rates and lower loss for the same price. Which of
these two options suits better to a particular user is given
by the user’s utility function. This concept will cover the
scenario in which due to the increase of the network loss, a
service may continue to be served within a different QoS class
(yielding lower utility). Furthermore, it is assumed that the
matching process performed earlier has eliminated those QoS
classes and corresponding utility curves that are not supported
either by the user or the service itself (e.g., operating point
corresponding to HDTV 1080p video streaming to a mobile
phone with small display can be eliminated directly).

The objective function used by QMEX AS (although any
other function can be used) is to maximize the sum of all user
utilities as:

max
∑
u∈U

nu∑
i=1

pui∑
j=1

WuwuixuijMOS(ruij) (5)

where Wu denotes the user priority, wui denotes media flow
weight factor, xuij is a binary variable, and MOS(ruij)
represents the MOS value at an operating point corresponding
to the resource vector ruij.

The following constraint applies to all flow weight factors

wui of a particular user u:
nu∑
i=1

wui = 1, ∀u ∈ U (6)

The factor Wu represents the relative priority of the user u
for the particular service (e.g., a “premium” user requesting
“bronze” VoIP service) over other users in the contention for
the same network resources. Therefore, the factor Wu serves
as the means for differentiating user groups based on the
specific criteria and is typically dependent on the type of
application the user is being served with (e.g., streaming in a
video conference may have higher priority over streaming of
a video clip, even though both applications consist of audio
and video flows), minimal accepted quality level of service
configuration (typically labeled as HIGH, MEDIUM, and LOW),
and the user’s contract with the network provider. A weight
factor allows a network provider to prioritize among different
users and services in the optimization process. Setting a higher
weight value would translate into having a greater impact in
the overall optimization process. Furthermore, xuij is a binary
variable utilized for the purpose of selecting exactly one flow
operating point with the following constraint:

nu∑
i=1

pui∑
j=1

xuij = 1, ∀u ∈ U, xuij ∈ {0, 1} (7)

Next, we identify a set of constraints imposed by all involved
parties (user, service provider, and network operator). The
following constraints limit the total consumption of network
resources (downlink and uplink bandwidth) across all users:

∑
u∈U

hu∑
i=1

pui∑
j=1

∑
q∈Q

xuijruijq ≤ Bdn (8)

∑
u∈U

nu∑
i=hu+1

pui∑
j=1

∑
q∈Q

xuijruijq ≤ Bup (9)

where Bdn and Bup denote maximum amount of downlink
and uplink bandwidth respectively, and hu stands for the num-
ber of flows pertaining to the user u in the downlink direction.
Such additional constraint has been introduced addressing the
limit of the maximum bandwidth that a network operator
may assign to a particular service provider in each of the
QoS classes. We introduce sets {Buplinkv,1 , ..., Buplinkv,Q } and
{Bdownlinkv,1 , ..., Bdownlinkv,Q } to denote a maximum network
bandwidth assigned to a particular service provider v in each of
the QoS classes in uplink and downlink direction, respectively.
The following constraints apply within a single QoS class:

∑
u∈U

hu∑
i=1

pui∑
j=1

f(v, i)xuijruijq ≤ Bdownlinkv,q , (10)

∑
u∈U

nu∑
i=hu+1

pui∑
j=1

f(v, i)xuijruijq ≤ Buplinkv,q , (11)

∀q ∈ Q,∀v ∈ V



The set V denotes the set of all active service providers having
a contract with the network provider. The function f(v, i)
returns a binary value, which indicates whether the given flow
i (which belongs to user u) is being transmitted from/to the
given service provider v. If it is transmitted, the function will
return 1; otherwise it will return 0. Using this formulation, the
scenario in which the user is simultaneously streaming content
from different service providers can be addressed as well.

Aside from bandwidth restrictions, the network operator and
service provider may impose additional constraints:∑

u∈U

nu∑
i=1

pui∑
j=1

xuijruijq ≤ Rmaxq ,

∀q ∈ (Q+ C + 1, ..., Q+ C +K) (12)

where the vector R = (RmaxQ+C+1, ..., R
max
Q+C+K) represents

constrained resources. In order to introduce fairness into the
model, we determine a minimum utility value per flow that
needs to be satisfied. This minimum may be defined per
user basis by specifying a vector of minimum utility values
corresponding to each user, or per flow basis. When using the
per user defined minimum, the additional constraint is:

nu∑
i=1

pui∑
j=1

xuijMOS(ruij) ≥MOSminu , ∀u ∈ U (13)

The following constraint takes into account limited user capa-
bilities:

nu∑
i=1

pui∑
j=1

xuijruijq ≤ cmaxuq ,

∀u ∈ U,∀q ∈ (Q+ 1, ..., Q+ C) (14)

where capabilities vector cu = (cmaxu,Q+1, c
max
u,Q+2, ..., c

max
u,Q+C)

represents a set of capabilities pertaining to the user u. For
the sake of simplicity, the elements of cu correspond to the
elements of the resource vector at a given operating point.
When using the limitations per flow (if such exist, e.g., max.
rate per video flow), they may be introduced as follows:

pui∑
j=1

xuijruijq ≤ Rmaxuiq ,

∀u ∈ U,∀q ∈ 1, ...,K,∀i ∈ 1, ..., nu (15)

V. ITERATIVE MOS INCREASE AND ADAPTED GREEDY
ALGORITHMS

Since the above constraint optimization problem is NP-
hard [18], we have developed two heuristic algorithms that
are used by the QMEX AS to achieve near optimal total
user satisfaction, subject to specified constraints under limited
system resources across multiple concurrent heterogeneous
sessions. The Iterative MOS increase algorithm (Algorithm 1),
based on the idea in [13], executes in two phases. During
the first phase, the algorithm allocates such amount of re-
sources for each session to achieve minimal acceptable MOS
as specified by the user. Based on such given calculated
operating points, throughout the second phase, the algorithm

Algorithm 1 Iterative MOS Increase algorithm.
1: for all user u ∈ U do
2: assign to each flow i operating point satisfying mini-

mum MOS requirement;
3: end for
4: sort(operating points by their MOS value);
5: repeat
6: for all flow i of user u do
7: evaluate utility gain ∆u,i,(j,j+1) ←

∆MOSu,i,(j,j+1)

∆Ru,i,(j,j+1)
;

8: end for
9: create set S = ∆u,i,(j,j+1)

10: repeat
11: choose flow i with the highest ∆u,i,(j,j+1)

12: if user capabilities OR network/provider restrictions
violated then

13: remove flow i from further evaluation (from set
S);

14: else
15: update the operating point of the chosen flow i;
16: evaluate next utility gain ∆u,i,(j+1,j+2) and place

it the set S;
17: end if
18: until no flow updated AND set S not empty
19: until (flow from S updated)

allocates the remaining resources until they are all exhausted.
At each iteration step, the algorithm searches for the system
flow which would contribute most to the global objective
function by switching from the current operating point to the
one with equal or higher value of MOS. Once all options
and/or resources are exhausted, the algorithm terminates. The
term ∆MOSu,i,(j,j+1) represents the difference in the MOS
value between two consecutive operating points of the same
flow. Similarly, Ru,i,(j,j+1) represents resource consumption
between the two operating points. The resources shared among
multiple user flows are given by a multidimensional vector,
where its elements are representing the available bandwidth
in different network QoS classes. Ru,i,j is thus defined as the
vector norm of the bandwidth consumption of the operating
point j relative to the total amount of bandwidth resource in
each of the QoS class. Moreover, Ru,i,(j,j+1) is calculated as
the difference between Ru,i,j+1 and Ru,i,j . A switch to the
operating point consuming resources in the QoS class with
less capacity will therefore yield greater ∆R value.

The idea for the second algorithm, called Adapted Greedy
algorithm (Algorithm 2), is based on [9]. The main concept
is to perform initial distribution of network and provider
resources across all system flows and later perform series
of switches of resources between the flows to increase the
value of the overall utility. The algorithm in [9] suggests
a fair initial distribution, where each flow is allocated the
same amount of resources. This approach seems reasonable
when the flows belong to a single media type such as given
by [9]. In our case, however, we consider heterogeneous
flows, where audio, video, and download sessions compete
for resources; and different media types typically consume



Algorithm 2 Adapted Greedy algorithm.
1: for all user u ∈ U do
2: calculate average resource consumption;
3: end for
4: assign to each user u amount of available network re-

sources according to his average resource consumption;
5: for all user u ∈ U do
6: find the optimal solution within given resource;
7: for all flow i of user u do
8: sort(operating points by their MOS value);
9: create list Lu,i containing sorted operating points

10: end for
11: end for
12: repeat
13: for all pairs of flows i and i′ do
14: calculate ∆(i, i+ 1)← ∆MOSu,i,(j,j+1)

∆MOSu′,i′,(j′,j′−1)
;

15: end for
16: while ∃s ∈ S | s > 1 do
17: choose max element s of the set S;
18: if user capabilities OR network/provider restrictions

violated then
19: remove element s from further evaluation (from

set S);
20: else
21: update the operating points of chosen flows i (j →

(j + 1)) and i′ (j′ → (j′ − 1));
22: end if
23: end while
24: until gain in global utility achieved > optional threshold

different amounts of resources. For example, an audio flow
consumes less bandwidth than a 1080p video flow. Hence,
our initial resource distribution is based on the average value
of resource consumption per flow, based on media type. This
approach results in fewer switches and a reduced algorithm
execution time.

The ratio ∆MOSu,i,(j,j+1)

∆MOSu′,i′,(j′,j′−1)
represents the relative improve-

ment in global utility function if flow i is assigned an operating
point achieving greater value of MOS and flow i′ is assigned
with the operating point achieving lower MOS than the cur-
rently selected one. Since operating points achieving higher
values of utility typically consume more system resources,
performing the switch from the operating point j to (j + 1)
of flow i and from the point j′ to the point (j′ − 1) of the
flow i′ will result in reallocation of resources from the flow i′

to the flow i. Both algorithms represent heuristic approaches
that typically cannot achieve a global optimum. In addition, to
find the optimum, the execution time might be prohibitively
long. Therefore, we enable the algorithms to terminate after
a preset Search Depth parameter. This parameter implicitly
scales the size of the switch pool S. In the case of Iterative
MOS Increase algorithm, search depth denotes the number of
points of each flow from the list Lu,i which will be considered
for potential switch from the currently selected one, while in
the case of Adapted Greedy algorithm, this parameter stands
for the number of flow operating points in both upwards

and downwards direction from the currently selected point
considered for potential upgrade and degradation, respectively.
Both algorithms may be upgraded to perform a retest of
operating points’ feasibility discarded from further evaluation
at some point during algorithm execution.

VI. EVALUATION AND EXAMPLE

The algorithms are implemented in Java programming lan-
guage and executed under Sun Java Runtime Environment SE
1.6.0 07-b06 using an Intel Core2 Duo T5250 @ 1.50 GHz
with 2 GB RAM and running Microsoft Windows XP Service
Pack 3. Five groups of user sessions representing different
types of offered services have been considered: 1) audiovisual
conference, 2) VoIP call, 3) file sharing, 4) movie download
(with subtitles), and 5) simple interactive game. Each service
is represented by a different number and type of media flows
(audio, video, and data). Quality levels for operating points
based on the achieved value of MOS include: HIGH: 4.2–4.5,
MEDIUM: 3.9–4.2, and LOW: 3.5–3.9. The maximum number
of flow operating points at each quality level is set to two.
Total network resources (in uplink and downlink direction) are
modeled as a linear function of number of session requests.
Each of the five services is hosted by two service providers,
SP1 and SP2. The number of users pertaining to each of the
two providers is the same, while the resources given to SP1 in
the QoS class of the highest quality (the lowest value of delay,
jitter and PEP parameters) are set to be 40% less than the
resources given to SP2. Consequently, sessions belonging to
users served by SP1 achieve a lower value of global MOS. The
decision mechanism determining which provider to allocate
for which user is outside the scope of this article. Similar to the
network resources limitation, values of maximum resources
available to each provider are formulated as a linear function
in number of sessions.

We uniformly increase the number of session requests for
each of the five service groups and recalculate the optimal
service configuration for each session. Constraints taken into
account during optimization procedure are network and service
provider available bandwidth resources, minimal value of ses-
sion MOS stated by the user, user terminal capabilities in terms
of maximum available memory, CPU, downlink and uplink
bandwidth connection, and finally, user budget. Numerical
values of these constraints are intentionally set in such a way
to make allocation of operating point achieving the highest
MOS for each system flow unattainable. This testing scenario
has been applied for both previously described algorithms.

To obtain reference values, the optimal solution was calcu-
lated by using GNU Linear Programming Kit (GLPK; avail-
able at http://www.gnu.org/software/glpk/). Due to the size of
the optimization problem and the inherent complexity of mixed
integer linear programming algorithms, GLPK soon reached
a limit for producing a result in a reasonable amount of time
for our purposes. For example, for 15 user sessions, the GLPK
solver generated the result in approximately 520 seconds (over
8 minutes), which would not be applicable in a real scenario
(like during session establishment). Thus, for up to 15 user



Fig. 2. Global MOS achieved by Iterative MOS Increase algorithm.

Fig. 3. Execution time of Iterative MOS Increase algorithm.

sessions, the outcomes of the two algorithms are compared
with each other as well as with those obtained by using GLPK,
and for a larger number of user sessions with each other only.

Figures 2 and 3 show the MOS and execution time, re-
spectively, for the Iterative MOS Increase algorithm. It may
be noted that the algorithm demonstrates fairly good MOS
performance and that it runs much faster than GLPK for
multiple user sessions. The achieved value of global MOS
is within 98.1% of the optimal solution obtained for a smaller
number of sessions by GLPK solver. Due to a possibility of
encountering a local optimum, differences in utility values may
appear in results for a small number of sessions when the
Search Depth parameter is set at 2 and 3. One can further see
that for a larger number of user sessions, the Search Depth
parameter does not contribute to a significant improvement in
the global utility value. Increasing the value of this parameter
improves the overall utility function only at the third decimal
point while, on the other hand, the execution time increases
considerably.

Figures 4 and 5, show the MOS and execution time, respec-

Fig. 4. Global MOS achieved by Adapted Greedy algorithm.

Fig. 5. Execution time of Adapted Greedy algorithm.

tively, for the Adapted Greedy algorithm. The achieved value
of global MOS is within 99% of the optimal solution obtained
for smaller number of sessions by GLPK solver. In terms of
execution time, the Adapted Greedy algorithm outperforms the
GLPK solver with a factor of 100 for 10 concurrent sessions,
while for the case of 15 sessions the factor exceeds the value
of 3000. As mentioned earlier, the GLPK solver needs about
520 seconds for the latter, while our algorithm (implemented
in Java and not optimized as such) requires between 150 ms
and 190 ms, even for 100 sessions.

It may also be noted that while the execution time progres-
sively increases with the increase in number of sessions and
search depth, as expected, the relationship is not as “regular”
as that found in the Iterative MOS Increase algorithm. Since
the set S expands proportionally to the value of the search
depth parameter, it may be expected that for a larger search
depth parameter (and a larger “search area”), the algorithm
would yield ever better results in longer execution time. This,
however, is not the case because the algorithm makes the
biggest relative improvement in MOS when selecting the



greatest element of the set S. With search depth set to 3, it will
achieve (again, relatively) larger contributions to the overall
MOS at the beginning of its execution, while the smaller
contributions thereafter will be disregarded (since a minimal
utility gain threshold is imposed). On the other hand, with
the search depth set to 2, these utility gains at each step are
smaller than in the previous case (e.g., in order to switch from
the operating point j to operating point j+3, it takes two steps
with search depth 2, and one step with the search depth 3). This
explains why the execution time for search depth 2 is higher
than that with search depth 3. Also, the aberrant behavior of
execution time at the search depth 1 in Fig. 3 when the number
of sessions exceeds 400, and at search depth 3 in Fig. 5 when
the number of sessions exceeds 350, may be ascribed to the
particular data used in this example.

The key point is to observe both the achieved MOS and
the execution time for a larger number of sessions, and to
note that the gain in MOS when using a higher Search Depth
parameter is actually insignificant in practical terms (between
1.5% and 0.005%). Hence, the higher values of the search
depth value only (unnecessarily) increase the execution time
in both algorithms without achieving significant MOS gain.

To conclude, the Adapted Greedy algorithm may be con-
sidered to perform better than the Iterative MOS Increase
algorithm, both in the terms of the overall MOS value and
the execution time. It is also worth noting that the difference
in terms of global utility between both algorithms and the
optimal solution is very small, even when limiting the search
depth to 1. Therefore, both algorithms produce acceptable
operational points where users are not penalized in achievable
quality. The execution time, however, for the Adapted Greedy
algorithm is significantly lower for a large number of sessions
and limited search depth. Thus, in the context of deployment
as part of session setup in the IMS system, the Adapted Greedy
algorithm would be a better option.

We have also tried versions of the two algorithms perform-
ing a retest of the switches to the operating point of some flow
which was pronounced infeasible at some point during the
execution process, but this did not result in any improvement
in the overall utility.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have designed, implemented, and evaluated
a new functionality for the QMEX AS in the IMS, which
allows to negotiate and optimize QoE parameters in multi-user
heterogeneous multi-session multi-media scenarios. Based on
a described mathematical model, the QMEX AS tries to opti-
mize overal user satisfaction given various constraints. As the
resulting optimization problem is NP-hard, we have developed
two heuristic algorithms which can find configurations for the
multimedia sessions that maximize a global utility function
based on MOS modeling of user perceived quality (under
given resource and fairness constraints) within the set of fea-
sible service configurations. The proposed algorithms perform
well in scenarios consisting of fewer than 100 concurrent
sessions. Here, the execution time was in the order of below

150–190 ms, while computing operational points that yielded
near optimal overall achieved MOS. Invoking optimization
algorithms in order to provide adequate admission policies
represents an issue to be addressed in future work. Moreover,
expanding QMEX AS adaptation mechanisms in dynamically
changing network, service, or user conditions by performing
global resources reallocation is also a topic for further study.
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