
*Published in Presence, MIT, Vol. 6, No 6, 1997, pp. 676-686

Virtual Life Network: a Body-Centered
Networked Virtual Environment*

Igor-Sunday Pandzic1, Tolga K. Capin2,

Nadia Magnenat Thalmann1, Daniel Thalmann2

1MIRALAB-CUI, University of Geneva
CH1211 Geneva 4, Switzerland

2Computer Graphics Laboratory (LIG), Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne, Switzerland

In order to feel the sense of presence in the Virtual Environment, it is important for the participants to
become a part of this environment and interact with it through natural behaviors. This is even more
emphasized in Networked Collaborative Virtual Environments where the participants need to see and
interact with each other. We present the Virtual Life Network (VLNET), a joint research effort in the
field of Networked Collaborative Virtual Environments at MIRALab - University of Geneva and
Computer Graphics Laboratory of the Swiss Federal Institute of Technology - Lausanne. In VLNET
each participant is represented by a virtual human actor with realistic appearance and movements
similar to the actual body. Interacting with the environment through his virtual body, the participant is
perceived by himself and others in a natural way. Since it is generally not possible to track all degrees
of freedom of the human body in order to reproduce the realistic body motion, we introduce the motor
functions that generate natural motion for standard tasks such as walking and arm motion; they are
based on limited tracked information (hand and head positions). Using the same virtual human
representation, but with the addition of high-level control, autonomous virtual actors can be introduced
into the environment to perform some useful tasks or simply to make the environment more appealing.
To further enhance the realistic feel of the virtual environment and to simplify object manipulation we
provide the facility of defining object behaviors by attaching motor functions to the objects.
Keywords: Virtual Actors, Virtual Life, Computer Animation, Networked Virtual Environments,
Multimedia

1 Introduction

Increasing hardware and network performance together with advances in virtual reality technology have
made networked virtual environments (VEs) a popular area of research. There has been an increasing
number of efforts for building networked VEs in the past few years, and solutions have been proposed for
building toolkits for communication in networked virtual worlds (Amselem, 1995; Carlsson & Hagsand,
1993; Macedonia et al., 1994; Singh et al., 1995), and special-purpose applications (Maxfield, Fernando
& Dew, 1995; Stansfield et al., 1995; Gisi & Sacchi, 1994; Broll, 1995).

Networked virtual environments share problems with single-user environments, but some additional
factors have to be considered. A virtual environment should give the users a feeling of presence within
this environment providing better interaction and an intuitive interface. Presence requires that participants
become part of the environment, and interact with the environment using natural means. The degree of
presence is expected to increase with an increasing level of physical or social interaction with appropriate
reactions from the environment. Therefore, a multi-user virtual environment system should provide
efficient and accurate representation and interaction of the objects with realistic animation, as well as
efficient communication management. A user feels a better degree of presence if other participants within
the same environment believe that he is present and active in the same environment, and they show it.
This property increases collaboration and interaction among participants within the VE. As the body
movements help in showing intentions and real actions more clearly, hence decreasing ambiguity in
interaction, it is important to represent the participants by virtual human bodies in shared environments.

There has been similar research to represent virtual humans in virtual environments (Granieri et al., 1995;
Yoshida et al., 1995). In the VLNET (Virtual Life Network) system (Capin et al., 1995), we attempt to
provide a more realistic representation through the use of motor functions, combined with interaction
with the environment. The motor functions encompass more than inverse kinematics or displaying
previously-recorded key frames, as they take into consideration other parameters specific to the motion.

- 2 - Autonomous Virtual Humans

Typically, the VEs are created by bringing together different models, possibly with different scalings and
even different formats. The lack of any corresponding interaction information concerning other objects
makes it difficult to manipulate the scene, for example placing an object comfortably in the right location
without it floating in air. Therefore, goal-oriented methods have to be provided for animating the objects
depending on the user input. We propose different classes of motor functions that can be combined for
this problem.

After giving a brief overview of the system structure and networking solutions, we present in more detail
the important aspects of the system: the virtual human representation and animation, autonomous virtual
actors and the issues of object manipulation and behaviors. Finally we present the results, experimental
applications, conclusions and directions for future work.

2 System overview

From the networking point of view, VLNET is a based on a fairly simple client/server architecture. The
server is mostly responsible for session management and message distribution. It is designed to work in
pair with a standard HTTP server for database distribution. The design of the VLNET client is highly
modular, with functionalities split into several processes. This allows not only performance
improvements, but also the possibility to easily replace certain modules and obtain different
functionalities. Next two sections discuss in more detail the networking issues and the client architecture.

2.1 The network structure

The communication in VLNET is based on a relatively simple client/server model. Figure 1 illustrates a
VLNET server site with several clients connected to different worlds. A standard HTTP server and a
VLNET Connection Server have to run permanently on a VLNET server site. They can serve several
worlds, which can be either VLNET files or VRML 1.0 files. For each world, a World Server is spawned
as necessary, i.e. when a client requests a connection to that particular world. The life of a World Server
ends when all clients are disconnected.

HTTP Server

VLNET
Connection

Server

World 1 World 2 World 3

VLNET
World Server

VLNET
World Server

VLNET Client VLNET Client VLNET Client

Fig. 1. VLNET server site with several connected clients

A VLNET session is initiated by a Client connecting to a particular world designated by a URL. The
Client first fetches the world database from the HTTP server using the URL. After that it extracts the host
name from the URL and connects to the VLNET Connection Server on the same host. The Connection
Server gives the Client the port address of the World Server, and spawns the World Server for the
requested world if one is not already running. The Client can provide the user data (the files describing
the body the user wants to be represented with) by sending a URL. This data is distributed to other
Clients in the session. The Client also has to fetch the user data from the other Clients. Once the
connection is established, all communication between the clients in a particular world passes through the
World Server.

Autonomous Virtual Humans - 3 -

2.2 VLNET Client architecture

The design of the VLNET Client is highly modular, with functionalities split into a number of
processes. Figure 2 presents an overview of the modules and their connections. VLNET has an open
architecture, with a set of interfaces allowing a user with some programming knowledge to access the
system core and change or extend the system by plugging custom-made modules, called drivers, into the
VLNET interfaces. These drivers only have to use a defined API to connect to VLNET. They can run on
the local host, or on a remote host.

LEGEND:

 Internal VLNET processes; can be changed only by recompiling VLNET

 Logical entities within VLNET core process, called engines

 Internal shared memory segments for data exchange within internal processes; not
 accessable to users

 External shared memory interfaces, accessable to the users through defined APIs

 External processes (called drivers); can be programed by the user using the defined APIs;
 they are replacable and sometimes optional

 External devices; sometimes optional or replacable

FACIAL
REPRESEN-

TATION
ENGINE

BODY
REPRESEN-

TATION
ENGINE

OBJECT
BEHAVIOR

ENGINE

NAVIGATION
AND OBJECT

MANIPULATION
ENGINE

COMMUNI-
CATION

PROCESS

MESSAGE
QUEUE

MAIN
SHARED
MEMORY

DATA BASE
PROCESS

CULL
PROCESS

DRAW
PROCESS

FACIAL
EXPRESSION
INTERFACE

BODY
POSTURE

INTERFACE

NAVIGATION
INTERFACE

OBJECT
BEHAVIOR
INTERFACE

FACIAL
EXPRESSION

DRIVER

BODY
POSTURE
DRIVER

NAVIGATION
DRIVER

OBJECT
BEHAVIOR

DRIVER

VLNET CORE
PROCESS

...MORE
OBJECT

BEHAVIOR
DRIVERS

NET

SCREEN

CAMERA

FOB,..

SB,
MOUSE,

3D
MOUSE..

If any of the drivers runs on
a remote host, the network interface

is automatically installed here

Fig. 2. Virtual Life Network Client overview

The VLNET core consists of four logical units, called engines, each with a particular task and an interface
to external applications (drivers).
• The Object Behavior Engine takes care of the predefined object behaviors, like rotation or falling,

and has an interface allowing to program different behaviors using external drivers.
• The Navigation and Object Manipulation Engine takes care of the basic user input: navigation,

picking and displacement of objects. It provides an interface for the navigation driver. If no
navigation driver is activated, standard mouse navigation exists internally. Currently, navigation
drivers exist for the SpaceBall and Flock of Birds/Cyberglove combination. New drivers can easily
be programmed for any device.

• The Body Representation Engine is responsible for the deformation of the body. In any given body
posture (defined by a set of joint angles) this engine will provide a deformed body ready to be

- 4 - Autonomous Virtual Humans

rendered. This engine provides the interface for changing the body posture. A standard Body Posture
Driver is provided, that connects also to the navigation interface to get the navigation information,
then uses the Walking Motor and the Arm Motor (Boulic et al., 1990; Pandzic et al., 1996) to
generate the natural body movement based on the navigation. Another possibility is to replace this
Body Posture Driver by a simpler one that is directly coupled to a set of Flock Of Birds sensors on
the users body, providing direct posture control.

• The Facial Representation Engine provides the synthetic faces with a possibility to change
expressions or the facial texture. The Facial Expression Interface is used for this task. It can be used
to animate a set of parameters defining the facial expression.

All the engines in the VLNET core process are coupled to the main shared memory and to the message
queue. Cull and Draw processes access the main shared memory and perform the functions of culling and
drawing as their names suggest. These processes are standard SGI Performer (Rohlf & Helman, 1994)
processes.

The Communication Process receives messages from the network (actually from the VLNET World
Server) and puts them into the Message Queue. All the engines read from the queue and react to messages
that concern them (e.g. Navigation Engine would react to a Move message, but ignore a Facial
Expression message which would be handled by the Facial Representation Engine). All the Engines can
write into the outgoing Message Queue, and the Communication Process will send out all the messages.
All messages in VLNET use the standard message packet. The packet has a standard header determining
the sender and the message type, and the message body. The message body content depends on the
message type but is always of the same size (74 bytes), satisfying all message types in VLNET.

The data coming to any Engine through its external Interface is packed into a message packet and put
into the Message Queue by the Engine. The Communication process sends out the packet, and the
Communication Processes of other participants receive it and put it into the Message Queue. The
appropriate Engine reads it from the Message Queue and processes it. In this way the data input from any
Driver comes to the appropriate Engine at each participating site.

The Data Base Process takes care of the off-line loading of objects and user representations. It reacts to
messages from the Message Queue demanding such operations.

3 The virtual humans

To improve the interaction among the participants in a multi-user virtual environment we employ the
full-body participant representation using virtual actors. The body of a virtual actor realistically represents
the real participant's body and the body animation is naturally correlated to the user actions. In addition
to the user-guided actors, we have implemented virtual actors with self-determined actions: the
autonomous actors. While having a high-level behavior control, the autonomous actors use the same
representation and low-level motion control as the guided actors.

To enhance the communication facility between the users we include facial expressions on the virtual
actors using facial animation techniques or by transmitting the real facial images captured by a camera and
mapping them on the face of the virtual actor.

Each user can provide his/her personalized body for the representation in the Virtual Environment. The
body can vary in shape, size, texture representing the clothes, facial features and texture. Tools that allow
this kind of modeling are separate from the VLNET application.

3.1 Virtual body representation

The body representation in VLNET is based on the HUMANOID articulated body model (Boulic et al.,
1995). The body can be represented in three levels of detail ranging from 2000 to 40000 triangular facets.
For realistic modeling of human shapes, we make use of deformed body surfaces attached to the human
skeleton (Shen & Thalmann, 1995; Boulic et al., 1995), rather than simple geometric primitives
representing body links with a simple skeleton. This model allows the parametric representation of
different human bodies. The human skeleton that we use is based on the anatomical structure of the real
skeleton, while still allowing real-time control. It consists of 74 degrees of freedom without the hands,
with an additional 30 degrees of freedom for each hand. The skeleton is represented by a 3D articulated
hierarchy of joints, each with realistic maximum and minimum limits. A metaball structure is attached to
the skeleton to simulate the muscle structure, and the final triangle mesh representing the skin is

Autonomous Virtual Humans - 5 -

calculated based on the positions of the metaballs when the skeleton moves (Shen & Thalmann, 1995).
To ensure the calculation of the skin deformations in real time, most of the skin is precomputed in the
neutral position of the skeleton, and only the parts susceptible to frequent and strong deformations (e.g.
around the joints) are recalculated in each frame. This method can produce realistic skin deformation for
an animated body in real time. Figure 3 illustrates the layers of the body model: skeleton, metaballs,
body contours and skin surface.

3.2 Motion control for guiding virtual actors

The high quality visual representation is only one step towards a believable body model; at least as
important is the natural body movement corresponding to the user actions. This could be best achieved
by using a large number of sensors to track all degrees of freedom in the real body. However, this is
generally not possible or not practical. Normally, only a few degrees of freedom will be tracked, and the
rest has to be interpolated using the behavioral human animation knowledge and different motion
generators.

Each user sees the virtual environment through the eyes of his body, and can control the movement of the
body by various sensor devices (varying from spaceball and dataglove, to numerous sensors attached to
body). In addition to his eye position, the user also has control of his virtual hand to interact with the
environment (pick up and reposition objects). We selected these two modes of control, as most
conventional input devices sense position and orientation of the head (e.g. head-mounted displays) and
the hand (e.g. dataglove), so that a Navigation Driver (see figure 2) can easily be built for most devices.

In the VLNET system, we provide a set of motor functions that are responsible for different human
motion: walking motor for navigation, and arm motor for manipulation of objects. These motor
functions are more powerful than playing previously-recorded motions: they are based on approximations
coming from biomechanical experiments, and they attempt to consider different parameters of the motion
they are responsible for, in order to give parametrized motion (for example step length in walking as a
function of velocity). They are actually implemented within the Body Posture Driver, reading the
navigation data from the Navigation Interface and feeding the body posture data to the Body
Representation Engine (see figure 2).

Fig. 3. The HUMANOID body model; skeleton structure, metaball structure,
body contours, final body representation

- 6 - Autonomous Virtual Humans

When the user navigates through the environment, the walking motor is used to perform a natural
walking motion. The participant uses input devices (e.g. spaceball, dataglove with gesture interpretation)
to update the eye position of the virtual actor. Based on this control, the incremental change of the eye
position is computed and the rotation and velocity of the body center is estimated. The walking motor
uses the instantaneous velocity to compute the length and duration of the walking cycle, from which it
computes the joint angles of the body. The walking motor is based on the HUMANOID walking model
(Boulic, Magnenat-Thalmann & Thalmann, 1990), guided interactively by the user or automatically
generated from the given trajectory. Figure 4 shows an example of the walking motion in real time.

For object manipulation and the arm motion in general, the arm motor has to compute the joint angles of
the arm based on the 6 degrees of freedom of the hand determined by user input. There are multiple
solutions of joint angles reaching the same hand position, and the most realistic one has to be chosen. At
the same time the joint constraints have to be taken into account. These considerations make the arm
motor much more complicated then a simple inverse kinematics problem. For the arm motor we use the
captured data obtained using sensors and stored into a precomputed table of arm joints. This table
divides the normalized volume around the body into a discrete number of subvolumes (e.g. 4x4x4) and
stores the mapping from subvolumes into joint angles of the right arm. Figure 4 shows an example of
arm motion produced by this mechanism.

Fig. 4. The sequence of frames illustrating the walking and arm motors for the human body and different
types of motor functions for objects: automatic door (user-dependent), hands of the watch showing time

(time dependent), falling object (environment-dependent).

Autonomous Virtual Humans - 7 -

The users can also select a posture for the upper body for different emotions: tiredness, happiness, paying
attention, etc. Currently, the user explicitly selects one emotion, using commands similar to smileys that
are used commonly in text messages to express different emotions. The emotion motor sets the body
joints at the vertebrae ending at the shoulders, based on this input. There is a need to define an emotion
motor function that automatically recognizes the appropriate motion using data sensed from the real user.
This current motor function is an introductory step to building an automatic emotion motor.

3.3 Facial expressions

Facial expressions are among the most important means of human communication, expressing intentions,
thoughts and feelings. Therefore we include the facial communication in our multi-user virtual
environment to enhance the communication between the users. There are two methods for facial
communication: video texturing and model-based coding of facial expressions.

3.3.1 Video Texturing

In this approach we implement the facial communication by capturing the user's face using a camera and
distributing it in real time to other users to be texture-mapped on the face of the virtual actor. Thus the
virtual actor has the real moving face of the remote user.

The original images captured by the camera are first processed to extract the subset of the image
containing the user's face. This processing is based on a comparison with an initial background image
(the requirement is that the background is static). The extracted facial image is compressed at each frame
and distributed to other users. This data does not pass through standard VLNET Communication
Process which uses a fixed packet size, but through a special communication channel opened for this
purpose. At the receiving side, an additional service process is charged with the receipt and
decompression of the images. The main application gets the decompressed images through shared
memory from the service process, decoupling the facial video frame rate from the application frame rate.

The facial images are texture-mapped on a simplified model of a human head with attenuated features.
This is a compromise between mapping on a simple shape (e.g. box, ellipsoid) which would give
unnatural results and mapping on a full-featured human head model where more precise image - feature
alignment would be necessary. The texture mapping is illustrated in figure 5.

Fig. 5. Mapping of the face to the 3D virtual actor. Usage of simple head
provides a compromise between 3D geometry and texture quality.

3.3.2 Model-based coding of facial expressions

Instead of transmitting whole facial images as in the previous approach, in this approach the images are
analyzed and a set of parameters describing the facial expression is extracted (Pandzic et al., 1994). As in
the previous approach, the user has to be in front of the camera that digitizes the video images of head-
and-shoulders type. The set of extracted parameters includes global head motion, eyes aperture, gaze
direction, eyebrow positioning, jaw aperture, mouth shape. These parameters are packed into standard
VLNET message packets and transmitted.

On the receiving end, the Facial Representation Engine receives messages containing facial expressions
and performs the facial animation accordingly. This method can be used in combination with texture
mapping. The model needs an initial image of the face together with a set of parameters describing the

- 8 - Autonomous Virtual Humans

position of the facial features within the texture image in order to fit the texture to the face. Once this is
done, the texture is fixed with respect to the face and does not change, but it is deformed together with
the face, in contrast with the previous approach where the face was static and the texture was changing.
The main drawback of the facial module is that it is not possible to incorporate it with users wearing
HMD, as the face cannot be captured. However, it provides a good medium of interaction with shutter
glasses or in the absence of these devices.

3.4 Autonomous virtual actors

Autonomous virtual actors can be designed to populate the environment and perform some useful tasks,
like guiding the participants, playing some game with them, or simply making the environment more
interesting and appealing. The autonomous actors are connected to the system in the same way as human
participants using the VLNET core, but the user guidance modules are replaced by autonomous behavior
modules. As these virtual actors are not guided by the users, they should have sufficient autonomous
behaviors to act autonomously to accomplish their tasks. This requires building behaviors for motion, as
well as appropriate mechanisms for interaction.

Given the open architecture of VLNET, the system is suitable as a testbed for all kinds of autonomous
virtual humans in the Networked Virtual Environment. The external drivers (figure 2) are simply replaced
by the autonomous behavior module, replacing the user input by an autonomous decision mechanism.
Animation of autonomous actors is an active area of research (Thalmann, 1994; Phillips & Badler, 1991).
A typical behavioral animation system consists of three key components, which are connected to each
other:
• the perceptual system, which senses the environment, and provides the perception information about

the objects with which the actor can interact (Renault, Magnenat-Thalmann & Thalmann, 1990),
• the organism system, which is concerned with the rules, skills, motives, drives and memory,
• the locomotor system, which is responsible for using motors to generate motion.

The perceptual system should be realistic by providing the limitations of sensing the surrounding, and
should be improved through the synthetic vision (Renault, Magnenat-Thalmann & Thalmann, 1990). It
should represent what the actor would see in the real world (For example, the actor should not be able to
see through walls). The organism system should consider the different goals with the inference
mechanism in order to achieve motions. For the locomotor system, motors similar to those for guided
actors (e.g. for walking), can be used.

Fig. 6. An example shared environment with two guided actors and one autonomous actor

Autonomous Virtual Humans - 9 -

For initial implementation, we have constructed a test in which the autonomous actor, using simple
behaviors, interacts with the participant. In this experiment, virtual Marilyn as shown in Figure 6 tries to
attract the participant's attention by coming near him and opening her arms. If the user walks away from
her, she follows the participant. If the user comes too close to her, she escapes from him and goes to a
distant corner of the environment. She waits there until the user comes near her, and begins following
him again. This test, although very simple, provided good interaction with 11 subjects we tried. The
subjects in general claimed that the walking behavior and body gestures for the autonomous actor were
important factors in their interaction. The experiment had very simple characteristics: the autonomous
actor does not have a realistic vision subsystem, has very simple behaviors, and she does not recognize
the gestures of the user. However, this simple experiment showed that autonomous actors are a good tool
for increasing immersion in virtual environments.

Another experiment is illustrated in figure 7, where the user can play tennis against a computer-guided
opponent, with the computer-guided referee (Noser et al., 1996.). Both the player and the referee have
vision-based autonomous behaviors.

4 Interaction with Virtual Environment and Object Behaviors

It is expected that the participants feel a higher degree of presence if the environment reacts to their
actions in a realistic way. For example, the user should be able to interact with the environment,
reposition objects by picking them up with his virtual hand, and releasing them, making them fall. In
order to pick up an object, the user moves his hand near the object and explicitly requests picking (e.g.
by clicking spaceball button, closing dataglove). The objects stay picked until released explicitly by the
user.

Typically the VEs are created by bringing together different models, possibly with different scalings and
even different formats. Unlike CAD models, these models lack any corresponding interaction information
between objects. This makes it difficult to manipulate the scene. A dynamic simulation with collision
response would solve this problem. However for medium-sized environments this is a time-consuming
solution, resulting in unwanted delays in the simulation. Therefore, we adopt a solution which
compromises between realistic appearance and goal-oriented behaviors. We propose three classes of motor
functions that can be attached to the objects.

Fig. 7. Playing tennis against a virtual opponent with a virtual referee

- 10 - Autonomous Virtual Humans

A set of behaviors can be associated dynamically with any object in the environment. The object
behaviors are implemented as different motor functions which give them a means of interacting with the
users and the other objects. The types of motor functions can be divided into 3 classes:
• continuous motor functions: these functions require transformation update of the object regularly,

within a specific period of time without any delay. For example, hands of a clock to show the time
are in this category.

• user-dependent motor functions: these functions depend on the user input. This can be an explicit
user input (for example, request for changing servers, see below); or implicit input (for example,
automatic door behavior driven by position of the user).

• environment-dependent motor functions: these functions are dependent on the environment as well as
the object itself. We define different built-in motor functions corresponding to this category: magnet,
vertical displacement, horizontal displacement, axis alignment. Magnet allows to attach different
objects to each other with a predetermined transformation matrix (e.g. the watch body and bracelet
are always attached with one transformation). Vertical displacement is called when the object is
released; and is used for making the objects fall until it collides with an object, simulating gravity.

A subset of these behaviors can be added optionally to the objects during the scene creation. A new
motor function can be added only by programming. However, external Object Behavior Drivers can be
attached to the system to provide more object behaviors. Figure 4 demonstrates some examples of motor
functions attached to objects.

5 Results

We have tested the VLNET system over the ATM network between Geneva and Singapore, provided
during the Telecom'95 exhibition in Geneva. Our results showed that the ATM network is suitable for
guaranteeing quality of service for small-sized packets between the server and the clients. Other
experiments were undertaken between multiple users located in Switzerland and Japan over the Internet
network and Swiss ATM Pilot network, as well as with sites in Belgium and Great Britain.

We have built experimental worlds for a number of applications:
• Teleshopping: The VLNET system has been experimentally used by Chopard Watches, Inc. ,

Geneva, to collaboratively present and view the computer-generated models of the recently designed
watches with remote customers and colleagues in Singapore and Geneva. The models were
developed using AutoDesk software, and were easily included in the virtual environment.

• Business: Experiments are continuing for building a virtual meeting room for distant users with
utilities like images, slide shows, movies as well as 3D objects.

• Entertainment: The VLNET environment is also used by remote partners for playing chess and
puzzles. These models were created using the IRIS InventorTM and WaveFrontTM packages.
Another gaming application is playing tennis against a computer-guided opponent.

• Interior design: Currently, experiments are continuing on furniture design by the customer and the
sales representative to build a virtual house. The model was created using the WaveFront package.

• Medicine: By importing medical images or 3D representation of organs reconstructed from medical
images (Kalra et al., 1995.) the VLNET system can be used for education or consultations in
medicine.

Figure 8 shows snapshots of the system in use for some of the mentioned applications.

6 Conclusion and future work

We have presented the Virtual Life Network, a Networked Collaborative Virtual Environment system
using the virtual humans. The open architecture of VLNET makes it a flexible framework for various
kinds of collaborative applications, possibly including autonomous virtual humans.

Future work might concentrate on the aspects of facial and gestural communication, object manipulation
and behaviors, and algorithms for guidance of autonomous virtual humans.

Autonomous Virtual Humans - 11 -

Acknowledgments

The research was partly supported by ESPRIT project HUMANOID (P 6079), Swiss National
Foundation for Scientific Research, Silicon Graphics, Federal Office of Education and Science, the
Department of Economy of City of Geneva and the VISINET project. We would like to thank assistants
of LIG and MIRALAB for the models and libraries.

References

Amselem D. (1995). A Window on Shared Virtual Environments. Presence: Teleoperators and Virtual
Environments, Vol. 4, No. 2.

Boulic R., Capin T., Huang Z., Kalra P., Lintermann B., Magnenat-Thalmann N., Moccozet L., Molet T., Pandzic
I., Saar K., Schmitt A., Shen J., Thalmann D. (1995). The Humanoid Environment for Interactive
Animation of Multiple Deformable Human Characters", Proceedings of Eurographics '95. Maastricht.

Boulic R., Magnenat-Thalmann N. M.,Thalmann D. (1990). A Global Human Walking Model with Real Time
Kinematic Personification. The Visual Computer, Vol.6(6).

Broll W. (1995). Interacting in Distributed Collaborative Virtual Environments", Proceedings of IEEE
VRAIS'95.

Capin T.K., Pandzic I.S., Magnenat-Thalmann N., Thalmann, D. (1995). Virtual Humans for Representing
Participants in Immersive Virtual Environments. Proceedings of FIVE '95, London.

Carlsson C., Hagsand O. (1993). DIVE - a Multi-User Virtual Reality System. Proceedings of IEEE VRAIS '93,
Seattle, Washington.

Gisi M.A., Sacchi C. (1994). Co-CAD: A Collaborative Mechanical CAD System. Presence: Teleoperators and
Virtual Environments, Vol. 3, No. 4.

Granieri J.P., Becket W., Reich B.D., Crabtree J., Badler N.I. (1995). Behavioral Control for Real-Time Simulated
Human Agents. Proceedings of ACM Symposium on Interactive 3D Graphics, Monterey, California.

Macedonia M.R., Zyda M.J., Pratt D.R., Barham P.T., Zestwitz, (1994). NPSNET: A Network Software
Architecture for Large-Scale Virtual Environments. Presence: Teleoperators and Virtual
Environments, Vol. 3, No. 4.

Fig. 8. Some application examples (teleshopping, business, entertainment, medical)

- 12 - Autonomous Virtual Humans

Maxfield J., Fernando T., Dew P. (1995). A Distributed Virtual Environment for Concurrent Engineering.
Proceedings of IEEE VRAIS '95.

Noser, H., Pandzic, I.S., Capin, T.K., Magnenat Thalmann, N., Thalmann, D. (1996). Playing Games through the
Virtual Life Network, Proceedings of Artificial Life V, Nara, Japan.

Pandzic I.S., Kalra P., Magnenat-Thalmann N., Thalmann D. (1994). Real-Time Facial Interaction. Displays, Vol
15, No 3.

Pandzic, I.S., Capin, T.K., Magnenat Thalmann, N., Thalmann, D.(1996) Motor functions in the VLNET Body-
Centered Networked Virtual Environment. Proc. of 3rd Eurographics Workshop on Virtual
Environments, Monte Carlo

Phillips, C.B., Badler, N.I. (1991). Interactive Behaviors for bipedal articulated figures. Computer Graphics.
Vol. 25, no. 5.

Rohlf J., Helman J. (1994) IRIS Performer: A High Performance Multiprocessing Toolkit for Real-Time 3D
Graphics, Proc. SIGGRAPH'94.

Shen, J., Thalmann, D. (1995). Interactive Shape Design Using Metaballs and Splines. Eurographics Workshop
on Implicit Surfaces. Grenoble.

Renault, O., Magnenat-Thalmann, N., Thalmann, D. (1990). A Vision-based Approach to Behavioral Animation.
The Journal of Visualization and Computer Animation, Vol.1, No.1

Singh G., Serra L., Png W., Wong A., Ng H. (1995). BrickNet: Sharing Object Behaviors on the Net.
Proceedings of IEEE VRAIS '95.

Stansfield S., Miner N., Shawver D., Rogers D. (1995). An Application of Shared Virtual Reality in Situational
Training. Proceedings of IEEE VRAIS '95.

Thalmann, D. (1994). Automatic Control and Behavior of Virtual Actors. Interacting with Virtual
Environments, MacDonald L., Vince J. (Ed)

Yoshida M., Tijerino Y., Abe S., Kishino F. (1995). A Virtual Space Teleconferencing System that Supports
Intuitive Interaction for Creative and Cooperative Work. Proceedings of ACM Symposium on
Interactive 3D Graphics. Monterey, California.

