
Realistic Avatars and Autonomous Virtual Humans

in VLNET Networked Virtual Environments

Tolga K. Capin(1), Igor Sunday Pandzic(2),
Nadia Magnenat Thalmann(2), Daniel Thalmann(1)

(1) Computer Graphics Laboratory
 Swiss Federal Institute of Technology (EPFL)

 CH1015 Lausanne, Switzerland
 {capin, noser, thalmann}@lig.di.epfl.ch

 http://ligwww.epfl.ch/

(2) MIRALAB - CUI
 University of Geneva

 24 rue du General-Dufour
 CH1211 Geneva 4, Switzerland

 {Igor.Pandzic,Nadia.Thalmann}@cui.unige.ch
 http://miralabwww.unige.ch/

Abstract

Networked Collaborative Virtual Environments (NCVE) have been a hot topic of research for
some time now. However, most of the existing NCVE systems restrict the communication
between the participants to text messages or audio communication. The natural means of
human communication are richer than this. Facial expressions, lip movements, body postures
and gestures all play an important role in our everyday communication. Part of our research
effort in the field of Networked Collaborative Virtual Environments thrives to incorporate
such natural means of communication in a Virtual Environment. This effort is mostly based
on the use of realistically modeled and animated Virtual Humans. This paper discusses several
ways to use virtual human bodies for facial and gestural communication within a Virtual
Environment.

1. Introduction
The pace in computing, graphics and networking technologies together with the demand
from real-life applications made it a requirement to develop more realistic virtual
environments (Ves). Realism not only includes believable appearance and simulation of the
virtual world, but also implies the natural representation of participants. This representation
fulfills several functions:

• The visual embodiment of the user,

• The means of interaction with the world,

• The means of feeling various attributes of the world using the senses.

2

The realism in participant representation involves two elements: believable appearance and
realistic movements. This becomes even more important in multiuser networked virtual
environments (NVE), as participants’ representation is used for communication. A NVE can
be defined as a single environment which is shared by multiple participants connected from a
different host. The local program of the participants typically store the whole or a subset of
the scene description, and they use their own avatars to move around the scene and render
from their own viewpoint. This avatar representation in NVEs has crucial functions in
addition to those of single-user virtual environments:

• perception (to see if anyone is around)

• localization (to see where the other person is)

• identification (to recognize the person)

• visualization of others' interest focus (to see where the person's attention is directed)

• visualization of others' actions (to see what the other person is doing and what she
means through gestures)

• social representation of self through decoration of the avatar (to know what the other
participants’ task or status is).

Using virtual human figures for avatar representation fulfills these functionalities with
realism, as it provides the direct relationship between how we control our avatar in the virtual
world and how our avatar moves related to this control. Even with limited sensor
information, a virtual human frame that reflects the activities of the user, can be constructed
in the virtual world; and this increases the sense of presence in this virtual world.

NVEs with virtual humans is emerging from two threads of research with a bottom-up
tendency. First, over the past several years, many NVE systems have been created using
various types of network topologies and computer architectures. The practice is to bring
together different previously-developed monolithic applications within one standard interface;
and consists of building multiple logical or actual processes that handle a separate element of
the VE. Second, at the same time, virtual human research has developed to the level to
provide realistic-looking virtual humans that can be animated with believable behaviors in
multiple levels of control. Inserting virtual humans in the NVE is a complex task. The main
issues are:

• selecting a scalable architecture to combine these two complex systems,

• modeling the virtual human with believable appearance for interactive manipulation,

• animating it with minimal number of sensors to have maximal behavioral realism,

• investigating different methods to decrease the networking requirements for exchanging
complex virtual human information.

In this paper, we survey problems and solutions for these points, taking the VLNET (Virtual
Life Network) system as a reference model. The VLNET system has been developed at

3

MIRALab at University of Geneva, and Computer Graphics Laboratory at Swiss Federal
Institute of Technology, Lausanne. In VLNET, we try to integrate artificial life techniques
with virtual reality techniques in order to create truly virtual environments shared by real
people, and with autonomous living virtual humans with their own behavior, which can
perceive the environment and interact with participants [Capin97][Noser96].

2. Realistic Avatars and Autonomous Virtual Humans: Design
Issues
Realistic avatars representing participants, and autonomous virtual humans share similar
design issues and techniques, while they have a number of differences. In this paper, we
overview these differences and similarities.

In networked virtual environments, it is crucial to differentiate between user embodiments and
other objects in the scene at first glance. The realistic human bodies are easily differentiable
from the other 3D models and objects in the scene, hence using them as participant
representation allows to identify them easily. Using this embodiment regularly, the participant
has a bounded, authentic, and coherent representation in the virtual world. In addition, by
changing decoration of the body through clothes and accessories, the representation also has
an emergent identity.

Various applications have different requirements from avatar representation. For example, for
a computer supported collaborative work application, the most realistic representation and
animation of the body and the face might be the goal. On the other hand, a 3D chat application
might have different modeling and animation requirements. For example, the current simple
multiuser chat applications hides the real identity of the user, and this is likely increase the
interaction as it eliminates the problem of shyness. The animation in these chat applications
can be simple as playing predefined gestures of the body and the face, and can be complicated
including interactions with the environment using the embodiment (e.g. grasping objects).

Including autonomous virtual humans that interact with participants increases the real-time
interaction with the environment. Therefore, it is likely to increase the sense of presence of
the real participants in the environment. The autonomous virtual humans are connected to the
VLNET system in the same way as human participants, and also improve the usage of the
environment by providing services such as replacing missing partners, helping in
navigation. As these virtual humans are not guided by the users, they should have sufficient
behaviors to act autonomously to accomplish their tasks. This requires building behaviors for
motion, as well as appropriate mechanisms for interaction.

Our autonomous virtual humans are able to have a behavior, which means they must have a
manner of conducting themselves. Behavior is not only reacting to the environment but
should also include the flow of information by which the environment acts on the living
creature as well as the way the creature codes and uses this information. Behavior of
autonomous virtual humans is based on their perception of the environment.

These varieties in requirements for virtual human representation necessitate different
approaches to modeling and animation depending on the application. We have developed
various applications, as described below, for investigation of these techniques. However, this
variety in techniques should not eliminate the fact that these different types of virtual humans
should be present together within a single environment in a standard way. In VLNET, we try
to create truly virtual worlds with autonomous living actors with their own behavior where
real people should be able to enter and meet their inhabitants. The ultimate objective is to build

4

intelligent autonomous virtual humans able to take a decision based on their perception of the
environment and their interaction with the real participants.

2.1 Control of Virtual Humans

Whether avatar or autonomous, there is a need for the virtual human to interact with the
environment: it should be animated using motion control techniques, and it should be
provided enough information about the environment for perception.

Previously, we introduced three types of virtual humans according to the techniques to control
them, direct-controlled, user-guided, and autonomous [Capin97]:

• Directly controlled virtual humans: the joint and face representation of the virtual human is
modified directly (e.g. using sensors attached to the body) by providing the geometry
directly.

• User-guided virtual humans: the external driver guides the virtual human by defining tasks
to perform, and it uses its motor skills to perform this action by coordinated joint
movements (e.g. walk, sit).

• Autonomous virtual humans: the virtual human is assumed to have an internal state which
is built by its goals and sensor information from the environment, and the participant
modifies this state by defining high level motivations, and state changes (e.g. turning on
vision behavior).

All these motion control techniques can be used for avatars representing real participants, as
well as autonomous virtual humans. For example, a participant can control her representation
by directly updating the body with magnetic trackers; or by guiding her embodiment through
commanding the actor to sit, walk; or she can control by changing the high-level state of her
embodiment. Similarly, the same control techniques can be used for autonomous actors too.
Then, what makes the avatars and autonomous actors different? The main difference is not in
how to control the embodiment, but in what kind of information that the networked virtual
environment provides to the participant or the autonomous actor program. For example,
consider navigation. The real participant sees the rendered images on her display or HMD,
and decides which direction to walk. In this case, the NVE provides to the participant only the
rendered image. Ideally, the same image should be the only information to the autonomous
actor so that it can navigate by avoiding collisions with the environment. However, this
would require excessive computing power for vision techniques for processing this image;
and it could be done without losing the realism of the motion, as all the information for the
scene is already stored. For this purpose, Renault et al. proposed a synthetic vision technique,
where the environment is rendered through the eyes of the embodiment using the z-buffer
hardware [Renault90]. Instead of storing the color of each pixel in the z-buffer, a pointer to
the object is stored with the depth value. This simplified information should be given to the
autonomous actor instead of the normal image. Therefore, the information provided to the real
and autonomous actors is not the same. Typically, perceptions to the autonomous actor
should be coded in this simplified way in order to avoid additional computation. We are
continuing work on how to provide general information about the scene to external
applications controlling autonomous actors, particularly in the visual, auditory and tactile
senses, and behavioral coding of the virtual environment. The next section describes the
VLNET system, which our work is founded on.

5

3. The VLNET System
Typically, the virtual environment simulation systems are complex software systems,
therefore a modular design imposes itself. It is appropriate to design the runtime system as a
collection of cooperating processes, each of which is responsible for its particular task. This
also allows easier portability and better performance of the overall system through the
decoupling of different tasks and their execution over a network of workstations or different
processors on a multiprocessor machine. In VLNET, we use this multiprocess approach.
Figure 1 shows the architecture of the VLNET client. We separate the two types of processes:
the core VLNET processes, and external driver processes.

Figure 1: Client architecture of the VLNET system and its interface with external processes

3.1 VLNET Core Processes

Within the VLNET core, the main process executes the main simulation and provides services
for the basic elements of VEs to the external programs, called drivers. The display, cull and
database processes are standard IRIS Performer processes, and allow asynchronous loading
and display of the scene with the main simulation. The main process consists of four logical
units, called engines. The role of the engine is to separate one main function in the VE to an
independent module, and provide an orderly and controlled allocation of VE elements.
Moreover, the engine manages this resource among various programs which are competing
for the same object. The communication process is responsible for receiving and sending
messages through the network, and uses incoming and outgoing message queues to
implement asynchronous communication.

6

The object behavior engine is responsible for the requests for changing or querying the object
definition and behaviors in the scene, and collision detection among them. The navigation
engine connects the user input to the navigation, picking and manipulation of objects. The
input is in the form of relative and absolute matrices of the global position of the body, and
the requests for picking or releasing an object.

Similarly, the face and body representation engines are specialized for the virtual human
figure. The face engine is responsible for bridging between VLNET and external face drivers.
The engine obtains the camera video images or face model parameters discussed below from
the external face driver, and places in VLNET internal shared memory and outgoing message
queue.

The body representation engine has an external interface for the body posture including joint
angles or global positioning parameters, and high level parameters to animate the body. The
role of this engine is to provide possibilities to define multiple levels of control for the human
body, and to merge the output of different external body drivers to a single final posture.

3.2 External Drivers

The drivers provide the simple and flexible means to access and control all the complex
functionalities of VLNET. Simple, because each driver is programmed using a very small API
that basically consists of exchanging crucial data with VLNET through shared memory.

Flexible, because using various combinations of drivers it is possible to support all sorts of
input devices ranging from the mouse to the camera with complex gesture recognition
software, to control all the movements of the body and face using those devices, to control
objects in the environment and stream video textures to them, to build any amount of artificial
intelligence in order to produce autonomous or semi-autonomous virtual humans in the
networked virtual environment.

The Drivers are directly tied to the Engines in the VLNET Main Process. Each engine
provides a shared memory interface to which a driver can connect. Most drivers are optional
and the system will provide minimal functionality (plain navigation and manipulation of
objects) without any drivers. The drivers are spawned by the VLNET Main Process on the
beginning of the session, based on the command line where all combinations of drivers can be
specified. The drivers can be spawned on the local host or on a remote host, in which case the
transparent networking interface processes are inserted on both hosts. In a simple case, as
with most drivers shown in Figure 1, a driver controls only one engine. However, it is
possible to control more than one engine with a single driver, insuring synchronization and
cooperation.

The Facial Expression Driver is used to control expressions of the user's face. The
expressions are defined either using the Minimal Perceptible Actions (MPAs) [Kalra 93]. The
MPAs provide a complete set of basic facial actions, and using them it is possible to define
any facial expression. Examples of existing facial expression drivers include a driver that uses
the video signal from the camera to track facial features and map them into the MPAs
describing expressions and a driver that lets the user choose from a menu of expressions or
emotions to show on his face. The facial expression driver is optional.

The Body Posture Driver controls the motion of the user's body. The postures are defined
using a set of joint angles corresponding to 75 degrees of freedom of the skeleton model used

7

in VLNET. An obvious example of using this driver is direct motion control using magnetic
trackers [Molet 96]. A more complex driver is used to control body motion in a general case
when trackers are not used. This driver connects also to the Navigation Interface and uses the
navigation trajectory to generate the walking motion and arm motion. It also imposes
constraints on the Navigation Driver, e.g. not allowing the hand to move further then arm
length or take an unnatural posture. This is the standard body posture driver which is
spawned by the system unless another driver is explicitly requested.

The Navigation Driver is used for navigation, hand movement, head movement, basic
object manipulation and basic system control. The basic manipulation includes picking objects
up, carrying them and letting them go, as well as grouping and ungrouping of objects. The
system control provides access to some system functions that are usually accessed by
keystrokes, e.g. changing drawing modes, toggling texturing, displaying statistics. Typical
examples are a spaceball driver, tracker+glove driver, extended mouse driver (with GUI
console). There is also an experimental facial navigation driver letting the user navigate using
his head movements and facial expressions tracked by a camera [Pandzic 94]. If no navigation
driver is used, internal mouse navigation is activated within the Navigation Engine.

The Object Behavior Driver is used to control the behavior of objects. Currently it is
limited to controlling motion and scaling. Examples include the control of a ball in a tennis
game and the control of graphical representation of stock values in a virtual stock exchange.

The Video Driver is used to stream video texture (but possibly also static textures) onto any
object in the environment. Alpha channel can be used for blending and achieving effects of
mixing real and virtual objects/persons. This type of driver is also used to stream facial video
on the user's face for facial communication [Capin97].

3.3 VLNET Server

A VLNET server site consists of a HTTP server and a VLNET Connection Server. They can
serve several worlds, which can be either VLNET files or VRML 1.0 files. For each world, a
World Server is spawned as necessary, i.e. when a client requests a connection to that
particular world. The life of a World Server ends when all clients are disconnected.

Figure 2 schematically depicts a VLNET server site with several connected clients. A VLNET
session is initiated by a Client connecting to a particular world designated by a URL. The
Client first fetches the world database from the HTTP server using the URL. After that it
extracts the host name from the URL and connects to the VLNET Connection Server on the
same host. The Connection Server spawns the World Server for the requested world if one is
not already running and sends to the Client the port address of the World Server. Once the
connection is established, all communication between the clients in a particular world passes
through the World Server.

In order to reduce the total network load, the World Server performs the filtering of messages
by checking the users' viewing frusta in the virtual world and distributing messages only on
as-needed basis. Clients keep the possibility of contouring this mechanism by requesting a
higher delivery insurance level for a particular message, e.g. for heartbeat messages of a dead
reckoning algorithm [Capin 97-1].

8

HTTP Server

VLNET
Connection

Server

World 1 World 2 World 3

VLNET
World Server

VLNET
World Server

VLNET Client VLNET Client VLNET Client

Figure 2: Connection of several clients to a VLNET server site

4. Communication in VLNET
Natural human communication is based on speech, facial expressions and gestures. Ideally,
all these means of communication should also be supported within a Networked Collaborative
Virtual Environment. This means that the user's speech, facial expressions and hand/body
gestures should be captured, transmitted through the network and faithfully reproduced for
the other participants on their sites. The capturing should be done in a non-intrusive way to
increase interaction.

Obviously, the way to a complete system as described above is long and paved with
problems. Capturing facial expressions or gestures non-intrusively and with enough precision
is a complicated task. The synthesis of realistically looking human bodies and faces, and their
animation in real time is also very demanding. Communication protocols must insure that the
multi-modal data is transmitted to all the participants, and in the final synthesis the multi-
modal outputs have to be synchronized.

We are trying to solve some of these problems within the Virtual Life Network system and to
provide solutions leading to the complete communications as described above.

So far our work was not particularly concentrated on the audio (speech) communication. We
use public-domain audio conferencing tools (VAT) to integrate this capability in the VLNET
system. Therefore, audio communication is not discussed in this paper.

Next two sections will present several solutions for the facial communication, as well as some
solutions for the gestural communication of the body.

Facial Communication

Facial expressions play an important role in human communication. They can express the
speaker's emotions and subtly change the meaning of what was said. At the same time, lip

9

movement is an important aid to the understanding of speech, especially if the audio
conditions are not perfect or in the case of hearing-impaired listener.

We discuss four methods of integrating facial expressions in a Networked Collaborative
Virtual Environment: video-texturing of the face, model-based coding of facial expressions,
lip movement synthesis from speech and predefined expressions or animations.

Video-texturing of the face

In this approach the video sequence of the user's face is continuously texture mapped on the
face of the virtual human. The user must be in front of the camera, in such a position that the
camera captures his head and shoulders. A simple and fast image analysis algorithm is used to
find the bounding box of the user's face within the image. The algorithm requires that head &
shoulder view is provided and that the background is static (though not necessarily uniform).
Thus the algorithm primarily consists of comparing each image with the original image of the
background. Since the background is static, any change in the image is caused by the
presence of the user, so it is fairly easy to detect his/her position. This allows the user a
reasonably free movement in front of the camera without the facial image being lost. The
video capture and analysis is performed by a special Facial Expression Driver.

Figure 3 illustrates the video texturing of the face, showing the original images of the user and
the corresponding images of the Virtual Human representation.

Model-based coding of facial expressions

Instead of transmitting whole facial images as in the previous approach, in this approach the
images are analyzed and a set of parameters describing the facial expression is extracted
[Pandzic94]. As in the previous approach, the user has to be in front of the camera that
digitizes the video images of head-and-shoulders type. Accurate recognition and analysis of
facial expressions from video sequence requires detailed measurements of facial features.
Currently, it is computationally expensive to perform these measurements precisely. As our
primary concern has been to extract the features in real time, we have focused our attention on
recognition and analysis of only a few facial features. The set of extracted parameters
includes: vertical head rotation (nod), horizontal head rotation (turn), head inclination (roll),
aperture of the eyes, horizontal position of the iris, eyebrow elevation, distance between the
eyebrows (eyebrow squeeze), jaw rotation, mouth aperture, mouth stretch/squeeze.

10

Figure 3: Video texturing of the face

The analysis is performed by a special Facial Expression Driver. The extracted parameters are
easily translated into Minimal Perceptible Actions, which are passed to the Facial
Representation Engine, then to the Communication process, where they are packed into a
standard VLNET message packet and transmitted.

On the receiving end, the Facial Representation Engine receives messages containing facial
expressions described by MPAs and performs the facial animation accordingly. Figure 4
illustrates this method with a sequence of original images of the user (with overlaid
recognition indicators) and the corresponding images of the synthesized face.

Figure 4: Model-based coding of the face - original and synthetic face

This method can be used in combination with texture mapping. The model needs an initial
image of the face together with a set of parameters describing the position of the facial features
within the texture image in order to fit the texture to the face. Once this is done, the texture is

11

fixed with respect to the face and does not change, but it is deformed together with the face, in
contrast with the previous approach where the face was static and the texture was changing.
Some texture-mapped faces with expressions are shown in figure 5.

Lip movement synthesis from speech

It might not always be practical for the user to be in front of the camera (e.g. if he doesn't
have one, or if he wants to use a HMD). Nevertheless, the facial communication does not
have to be abandoned. It is possible to extract visual parameters of the lip movement by
analyzing the audio signal of the speech. An application doing such recognition and
generating MPAs for the control of the face can be hooked to VLNET as the Facial
Expression Driver, and the Facial Representation Engine will be able to synthesize the face
with the appropriate lip movement. An extremely primitive version of such system would just
open and close the mouth when there is any speech, allowing the participants to know who is
speaking. A more sophisticated system would be able to actually synthesize a realistic lip
movement which is an important aid for speech understanding.

Predefined expressions or animations

In this approach the user can simply choose between a set of predefined facial expressions or
movements (animations). The choice can be done from the keyboard through a set of
"smileys" similar to the ones used in e-mail messages. The Facial Expression Driver in this
case stores a set of defined expressions and animations and just feeds them to the Facial
Representation Engine as the user selects them.

Figure 5 shows some examples of predefined facial expressions.

Figure 5: Predefined facial expressions - surprise, sleep, boredom

Gestural Communication

Gestures play an important role in human communication. Using the body, many messages
can be communicated. The body movements can be roughly divided into three groups:

• instantaneous gestures: Most of the time, often even unconsciously, we accompany
our speech with gestures. They stress the speech and give emphasis on particular words.
They also very often have a meaning in themselves. The whole body posture also conveys

12

information about the person's state and possibly emotions. For example, from the posture it
can be determined if the person is tired, tense or relaxed.

• gesture commands: these are gestures that the user makes to specify some action. For
example, the sign 'come here' can be speficied by raising the arm. These movements can
change from one person or culture to another, therefore there is no well-defined set of rules
for the meanings.

• rule-based sign language: these are gestures, for example used by deaf people that
essentially follow well-defined rules to specify words or sounds. The signs typically work as
a metaphor for defining other objects or language. The gestures can also be used by the
software to define special tasks (e.g. showing forward direction to initiate a walk).

All these types of gestures can be controlled by two different methods: direct tracking and
predefined postures or gestures. The type of control might be suitable for a specific type of
gestures, however a combination of them can be used for different tasks.

Direct tracking

A complete representation of the participant actor's body should have the same movements as
the real participant body for more immersive interaction. This can be best achieved by using a
large number of sensors to track every degree of freedom in the real body. Molet et
al.[Molet96] discuss that a minimum of 14 sensors are required to manage a biomechanically
correct posture. However this is generally not possible due to limitations in the number and
technology of the sensing devices, as it is either too expensive to have this many sensors, or it
is too difficult for the participants to move with so many attached sensors. Therefore, the
limited tracked information should be connected with behavioral human animation knowledge
and different motion generators in order to "interpolate" the joints of the body which are not
tracked [Capin96]. The main approaches to this problem are: inverse kinematics using
constraints, closed form solutions, and motor functions.

The raw data coming from the trackers has to be filtered and processed to obtain a usable
structure. The software developed at the Swiss Federal Institute of Technology [Molet96]
permits to convert the raw tracker data into joint angle data for all the 75 joints in the standard
HUMANOID skeleton used within VLNET [Boulic95][Capin97], with additional 25 joints
for each hand. As shown in Figure 1, this software is viewed as Body Posture Driver by the
VLNET system, and VLNET communicates with it through the Body Posture Interface.
VLNET Body Representation Engine obtains this joint table from the Body Posture interface
and uses such data to produce deformed bodies ready for rendering. The posture data in the
form of joint angles fits into a VLNET message packet by reducing each angle to 8 bits, with
a maximal error of 1.4 degrees in 360 degrees. This error rate is sufficient enough to provide
body postures which is visually similar to the real body. By coupling the Flock of Birds
driver with VLNET we can obtain full gestural communication in a very direct, though
intrusive, way.

Predefined postures or body gestures

In a similar fashion as for the facial expressions, the body postures or gestures can also be
predefined and chosen by a metaphor. For example, the smileys normally used within emails
can be used to set a subset of the joints in the current body using the keyboard. The body
posture driver just stores the predefined postures and gestures (i.e. animated postures) and

13

feeds them to the Body Posture Engine as the user selects them. Figure 6 shows some
examples of predefined postures.

Figure 6: Basic set of gestures and postures

The main difference between direct control and predefined postures/gestures is that the direct
control provides more correpondence to the real posture of the participant. Therefore, it is
expected to provide more immersive feeling. However, the predefined postures can increase
the communication among participants in networked environments in the absence of enough
number of trackers. These two types of control can be combined to the animate the
participant's body for different types of gestures. There is a need to investigate and define a
set of tools that provide sufficient proprioceptive information for instantaneous gestures,
while providing easy and natural control for rule-based signs and sign gesture commands.

5. Networking
The articulated structure of the human body together with the face introduces a new
complexity in the usage of the network resources because the size of a message needed to
convey the body posture is greater than the one needed for simple, non-articulated objects.
This might create a significant overhead in communication, especially as the number of
participants in the simulation increases. In order to reduce this overhead it is possible to
communicate the body postures in more compact forms, accepting some loss of accuracy in
the posture definition. This is not the only trade-off to be considered when choosing the
optimal approach. Conversions between different forms of posture definition require
potentially expensive computations which might induce more overhead in computation than
was reduced in communication. The choice will also depend on the quality and quantity of
raw data available from the input devices, the posture accuracy required by the application
and the projected number of participants in the simulation.

For the networking analysis, we separate the discussion into body and faces, as they use
different control methods and as they use different channels for communication. In any case,
we can decompose the communication into three phases: coding, transmission, and decoding
of the data. The transmission lag for a message will be the sum of the lag of all these phases.

14

In addition, each message type contains an accuracy loss of data which is a trade-off to
decrease the lag. In this section, we analyze different message types with respect to the
following aspects:

• coding computation at the sender site: we evaluate the amount of computation needed in
order to convert the input data into the message to be sent, at the sending site;

• bitrate requirements: we evaluate the bandwidth requirements for different parameters to
describe the motion. We assume a minimum limit for real-time computation as 10
frames/second.

• decoding computation at the receiver site: we evaluate the amount of computation needed
to interpret the message and obtain the body posture(s) for display at the receiving site.
The weight of this computation on the simulation is typically more than the one at the
sender site because the messages from a potentially large number of participants have to
be processed contrary to coding which is done only for the locally controlled figure.

• accuracy loss: We evaluate the loss of accuracy of the body posture with respect to the
original input data. This is typically the trade-off to be considered against decreasing
coding/decoding computations and transmission overhead.

We compare these issues in Figure 7 for various types of human body motion control. We
consider four types of message packets that can be used to convey the body posture
information:

• global positioning parameters: The global positioning of 17 body parts can be sent as 3
rotation and 3 translation values. This data can be used directly to display the body by-
passing the conversion to joint angles.

• joint angles. These values are the degrees of freedom comprising the body, each
represented by a floating point value. We evaluate three possibilities for the message type:
the actual floating point representation of the angle, and 2-byte integer and 1-byte angle
information, discretized between 0 and 360. This data has to be transformed into global
positioning for display.

• end-effector matrices. A 4x4 floating point matrix is used to determine the position of the
end effectors, in this example the head and the right hand. An inverse kinematics with two
end-effectors (head and hand) has to be applied to the received message to obtain the final
posture.

• state information. Only the high level state information is conveyed which makes the
messages small. Moreover, the messages are sent only when state changes. The
computation complexity involved to produce the posture(s) from the state information can
range from quite simple (in the case of predefined static postures like sitting, standing)
through medium (in the case of predefined dynamic states like walking or running) to very
complex (in the case of more complex dynamic states like searching an object). In this
evaluation, we take the medium-level walking action as an example.

15

We analyze three typical situations with respect to different real-time control data: i) complete
body posture data is available, ii) only head and hand end-effector data is available, iii)
walking motion guiding data is available from an external driver.

 Figure 7: Networking body data a. Bitrate requirements for each message type b.
Coding computations for each body posture c. Decoding computations for each body posture

d. Accuracy loss with respect to original input data

Figure 7 shows the bitrate requirements, coding and decoding computations per frame, and
accuracy loss for different message types. Figure 7a is calculated with the assumption of a
minimum real-time speed of 10 frames/second. We see that the bitrate requirement varies
between 4 Kbytes/sec and 240 bytes/second for one human body. Figures 7b and 7c show
the coding and decoding results on an SGI Indigo2 Impact workstation with 250 MHz
processor. The results show that there are a wide range of possibilities to define and transmit
human figure information with respect to computation and bandwidth requirements. The
choice of the control and message type will depend on the particular application requirements.
Where high accuracy is needed (e.g. medical training applications) the transfer of body part
matrices or at least end effector matrices will be required; in the large-scale simulation with
numerous users it might be efficient to convey small messages containing the state
information and use filtering and level of detail techniques to reduce the computational
overhead. We chose the joint angles transfer as the optimal solution covering a wide range of
cases since it offers fair or good results on all criteria, balancing the network and
compression/decompression computational overhead (the traversal of the human hierarchy to
convert joint values to transformation matrices of body parts, to be rendered on display), and
accuracy loss. Using the state parameters for high level motions decreases the network
bandwidth, however it requires a fast decoding process at the receiving site. The example
walking motor showed the possibility of decreasing bandwidth requirements for sending
motion data. Figure 7d shows the accuracy loss of posture data with varying message types
and input methods. The results were computed by averaging the Euclidean distance between

16

the corresponding body parts in the initial body posture at the sender's site and the decoded
posture at the receiver's site.

Similarly, Figure 8 shows the bandwidth requirements and experimental results for coding
and decoding of the face. Figure 8a shows that using model-based coding drastically
decreases the network overhead, while Figures 8b and 8c demonstrate that the overheads of
coding and decoding are insignificant.

Figure 8: Networking face data a. Bitrate requirements for each message type b. Coding
computations for face data c. Decoding computations for face data

As the number of participants increases, the transmission and decoding overheads will be
excessive, and the speed might decrease significantly. Therefore, methods should be
investigated to decrease this overhead. An approach is not to send the information to a site at
all if there is no or little interaction, using filtering techniques [Pandzic97]. In addition, the
dead-reckoning techniques may be applied to extrapolate the human information from the last
received information of body and face, and the last speed. The initial results on human body
dead reckoning have shown that up to 50% of the traffic can be decreased by applying simple
predictive filtering on the joint angles [Capin97b].

6. Conclusions and Future Work
The human figure representation in networked virtual environments is not an easy task. First,
we presented an easy architecture how they can be included in a complex NVE system. Next,
we showed the different levels of controlling the human body, and compared them. Then, we
presented different possibilities to send human information, and the load they put on the
sender, network and receiver; as well as accuracy loss. The human figure information can put
a load on the computational and networking resources, and the best control, representation
and transmission form should be selected depending on the application and the resources.

Virtual human representation and communication in networked virtual environments is in an
early stage. We will further our research on compression of virtual human models, and
networking techniques to decrease communication requirements. The initial results are
promising, and we hope to achieve very low bitrate virtual human communication.

Moreover, we will work on human motion control for direct, guided and autonomous virtual
humans control. We are currently investigating techniques for providing simplified perceptual

17

information about the virtual environment to the autonomous actors, and interaction between
real participants and autonomous actors.

Acknowledgments

This research is financed by "Le Programme Prioritaire en Telecommunications de Fonds
National Suisse de la Recherche Scientifique" and the TEN-IBC project VISINET.

Numerous colleagues at LIG and MIRALab have directly or indirectly helped this research by
providing libraries, body and environment models, scenarios for applications, in particular
Elwin Lee, Eric Chauvineau, Hansrudi Noser, Marlene Poizat, Laurence Suhner and Jean-
Claude Moussaly. We would like to thank Mireille Clavien for designing body gestures and
postures, and Anthony Guye Vuilleme for implementing this user interface.

References

[Boulic 95] Boulic R., Capin T., Huang Z., Kalra P., Lintermann B., Magnenat-Thalmann
N., Moccozet L., Molet T., Pandzic I., Saar K., Schmitt A., Shen J., Thalmann D., "The
Humanoid Environment for Interactive Animation of Multiple Deformable Human
Characters", Proceedings of Eurographics '95, 1995.

[Capin97] T. K. Capin, H. Noser, D. Thalmann, I. S. Pandzic, N. Magnenat Thalmann,
“Virtual Human Representation and Communication in VLNET Networked Virtual
Environment”, IEEE Computer Graphics and Applications, March 1997.

[Capin97b] T. K. Capin, I. S. Pandzic, N. Magnenat Thalmann, D. Thalmann, “A Dead-
Reckoning Algorithm for Virtual Human Figures”, Proc. IEEE VRAIS’97, IEEE Computer
Society Press, 1997.

[Kalra 93] P. Kalra, "An Interactive Multimodal Facial Animation System", PhD Thesis nr.
1183, EPFL, 1993

[Molet 96] T. Molet, R. Boulic, D. Thalmann, “A Real-Time Anatomical Converter for
Human Motion Capture”, Proc. Eurographics Workshop on Computer Animation and
Simulation, R. Boulic ed., Springer, Wien, 1996, pp.79-94.

[Noser96] H. Noser, T. K. Capin, I. S. Pandzic, N. Magnenat Thalmann, D. Thalmann,
“Playing Games through the Virtual Life Network”, Proc. Artificial Life’96, Chiba, Japan,
1996, pp.114-121.

[Pandzic97] I. S. Pandzic, T. K. Capin, E. Lee, N. Magnenat Thalmann, D. Thalmann, “A
flexible architecture for Virtual Humans in Networked Collaborative Virtual Environments”,
Proc. Eurographics’97, Budapest, 1997.

[Pandzic 94] Pandzic I.S., Kalra P., Magnenat-Thalmann N., Thalmann D., "Real-Time
Facial Interaction", Displays, Vol. 15, No 3, 1994.

[Renault90]] Renault O., Magnenat-Thalmann N., Thalmann D., "A Vision-based Approach
to Behavioral Animation", The Journal of Visualization and Computer Animation, Vol.1,
No.1, 1990.

18

[Thalmann96] D. Thalmann, J. Shen, E. Chauvineau, "Fast Realistic Human Body
Deformations for Animation and VR Applications", Proc. Computer Graphics International
'96, Pohang, Korea,1996.

