
Published in the proceedings of Computer Animation 2002.

Conversational Virtual Character for the Web

KARLO SMID1, IGOR S. PANDZIC2
1Ericsson Nikola Tesla ETK

Krapinska 45, p.p. 93,
HR-10 002 Zagreb

karlo.smid@etk.ericsson.se

2Department of Electrical Engineering
Linköping University, SE-581 83 Linköping

igor@isy.liu.se

Abstract
Talking virtual characters are graphical simulations of
real or imaginary persons capable of human-like
behaviour, most importantly talking and gesturing.
Coupled with artificial intelligence (AI) techniques, the
virtual characters are expected to represent the ultimate
abstraction of a human-computer interface, the one where
the computer looks, talks and acts like a human. Such an
interface would include audio/video analysis and
synthesis techniques combined with AI, dialogue
management and a vast knowledge base in order to be
able to respond quasi-intelligently to the users - by
speech, gesture and even mood. While this goal lies
further on in the future, we present an architecture that
reaches towards it, at the same time aiming for a
possibility of practical applications in nearer future. Our
architecture is aimed specifically at the Web. It involves a
talking virtual character capable of involvement in a
fairly meaningful conversation with the user who types in
the input.

1. Introduction

Talking virtual characters are graphical simulations of
real or imaginary persons capable of human-like
behaviour, most importantly talking and gesturing.
Coupled with artificial intelligence (AI) techniques, the
virtual characters are expected to represent the ultimate
abstraction of a human-computer interface, the one where
the computer looks, talks and acts like a human.

In such a system, the AI technique must enable a talking
virtual character to lead a natural language conversation
with a user. Natural language conversation stands for the

conversation that we (human beings) use when we talk to
each other.

Many researchers have been involved in AI researches
into natural language conversation [Weizenbaum66,
Alice, Garner97, Hutchens98]. They have proposed
different techniques and produced several natural
language conversation systems. Every year they present
their work by competing for the Loebner Prize [Loebner].
The Loebner Prize is the first formal instantiation of a
Turing test [Turing50].

The AI system of our Virtual Character is A.L.I.C.E.
[Alice]. It is not based on complicated AI mechanisms
like neural network, knowledge representation, search,
fuzzy logic [Garner97], genetic algorithms or parsing
[Hutchens98]. The theory that is behind its AI is called
"Case-Based Reasoning" or CBR. The first
implementation of CBR was program ELIZA
[Weizenbaum66]. A.L.I.C.E. won the Loebner Prize in
2000 and 2001.

The ultimate conversational human-computer interface
would include audio/video analysis and synthesis
techniques coupled with AI, dialogue management and a
vast knowledge base in order to be able to respond quasi-
intelligently to the user – by speech, gesture and even
mood [Interface, Magnenat-Thalmann00]. While this goal
lies further on in the future, we present an architecture that
reaches towards it, at the same time aiming for a
possibility of practical applications in nearer future. Our
architecture is aimed specifically at the Web. It involves a
talking virtual character capable of involvement in a fairly
meaningful conversation with the user who types in the
input.

Our system architecture represents a speech on demand
system. An overview of the characteristics and design
options for such systems is given in [Beard01]. According
to [Beard01] our system architecture is a server bias
implementation. We have chosen this approach because

mailto:karlo.smid@etk.ericsson.se
mailto:igor@isy.liu.se

Published in the proceedings of Computer Animation 2002.

we wanted a lightweight client. The negative side of this
approach is that we have a need for bandwidth and
compression of generated bit stream files. Advantages are
that all processing is done on the server side and the
system upgrades the need to be done only on server side.

After presenting our architecture in the next section, we
give more details about the AI system we used, and in
particular about our Facial Animation Player, the
component that delivers the animated character to the
Web and the Facial Motion Cloning method for producing
animatable face models automatically. What is proposed
in the end is future work on the given architecture.

2. System Architecture

The design goal was to develop a Web-based Virtual
Character capable of leading a natural language
conversation with a user. The artificial intelligence of the
Virtual Character is based on A.L.I.C.E. [Alice]. The
animated Virtual Character is an extension of our previous
work [Pandzic01a]. The main task was to develop optimal
technical solutions for integrating those software tools into
a single application.

Expected result was a publicly accessible Web page
requiring no plug-ins and working at least in the current
versions of Netscape and Internet Explorer. The page has
to contain an animated Virtual Character and a text box.
When the user types English natural text in the text box,
Virtual Character replies by talking.

Solution of the design goal is the system architecture
given in Figure 2. The system is a typical client-server
architecture. Client and server sides have several modules.
Client side consists of Facial Animation Player (FAPly)
and Communication Handler (CH). On the server side
there are A.L.I.C.E. natural language conversation server
and Web server with Common Gateway Interface (CGI)
programs Fbagen and Garbage.

Facial Animation Player (FAPly) is explained in section
4. It presents the animated Virtual Character on the Web
page and animates it.

Communication Handler (CH) is at the heart of the
given system architecture. It was programmed by using
Java applets. It connects FAPly with A.L.I.C.E. The
interface between CH and A.L.I.C.E. is HTTP protocol,
more precisely its GET method. In that way A.L.I.C.E.
keeps all its functionality (internal variables). The
negative impact is that A.L.I.C.E. session is strictly
coupled with client's IP address. That means that it is
impossible to have multisession with A.L.I.C.E. from one
computer. CH gets "logical" answers from A.L.I.C.E. and

using Web server's CGI interface and Fbagen program
dynamically produces talking and lip sync bit stream files
for the FAPly. After FAPly plays those bit stream files,
CH deletes them by using Web server's CGI interface and
Garbage program.

A.L.I.C.E. server is a natural language conversation
server. It gives "intelligence" to FAPly.

The Web Server holds FAPly and CH and provides a
client with them on his request (Web browser). It is also
used as a temporary repository for speech and lip sync bit
stream files.

The CGI Fbagen program is used for dynamic generation
of speech and lip sync bit stream files. Input to this
program is an "intelligent" answer that CH gets from the
A.L.I.C.E. server. It uses Text to speech TTS interface
from Microsoft's SAPI engine for generating speech bit
stream file, and it also uses the lip sync encoder that was
presented in our previous work [Pandzic01a] for
generating the lip sync file. The lip sync file is encoded as
an MPEG-4 FBA [ISO14496] bit stream, using high-level
viseme parameters for lip movement encoding and viseme
blend with linear interpolation for coarticulation.

The CGI Garbage program deletes the speech and lips
sync bit stream files played by FAPly.

This system architecture was programmed by using Java
applets and Web server’s CGI interface. CGI
programming was done using C++. Microsoft's SAPI
engine must be installed on the host that runs Web and
A.L.I.C.E. servers.

Users type their input in the text box, and by pressing the
ENTER key or SEND button confirm their input . The
answer textbox is almost immediately filled with the
A.L.I.C.E. answer (Figure 1). After some time, Demy will
talk.

Figure 1: Demy in action.

The steps that CH takes during one user input are
illustrated in Figure 2.

Published in the proceedings of Computer Animation 2002.

During its initialisation, CH sets the session ID that is
used as the name for the speech and lip-sync bit stream
files. Session ID is client's connection time. This step is
done only once per session. When the user types the input
in the text box and presses SEND button or ENTER key,
CH asks the A.L.I.C.E. server through this input, and
A.L.I.C.E. answers (step 1. and 2.). Then CH sends this
answer to the CGI Fbagen program. Fbagen notifies CH
when generation of speech and lip-sync bit stream files is
done (steps 3. and 4.). Now files are ready and CH
triggers FAPly to play those files (step 5.). FAPly plays
files (step 6.). The result is that Demy speaks. The cycle is
finished when CH deletes speech and lips sync bit stream
files using the Garbage program (step 7.).

Figure 2: System architecture of the "Intelligent"

Virtual Talking Character Demy

3. The Artificial Intelligence system

The artificial intelligence system in our architecture is
based on the A.L.I.C.E. system [Alice]. A.L.I.C.E.
(Artificial Linguistic Internet Computer Entity) is a
natural language artificial intelligence chat robot. Dr.
Richard S. Wallace is the author of A.L.I.C.E.

A.L.I.C.E. migrated to the platform-independent Java
language in 1998. It was made open source under the
GNU general public license, and more than 300
developers from around the world have contributed to the
A.L.I.C.E. project.

The theory that describes the A.L.I.C.E. algorithm is
called "Case-Based Reasoning" or CBR [Wallace00]. The
CBR "cases" are the categories in AIML. The algorithm
finds best-matching pattern for each input. Thus
A.L.I.C.E. learns and thinks.

Artificial Intelligence Markup Language AIML [AIML] is
based on Extensible Markup Language XML. Its purpose
is to give chat robots (bots) intelligence and knowledge. It
is a minimalist markup language.

4. The Facial Animation Player

The first choice we made when we were designing the
player was to make it MPEG-4 FBA compatible
[ISO14496, Escher98, Tekalp00]. This guarantees a
variety of Facial Animation content sources, as many
developers already support the standard and this trend is
increasing. The choice of MPEG-4 also ensures very low
bit rate needs. The MPEG-4 FBA decoding process itself
is based on integer arithmetic, its implementation is very
compact and it is very modest in CPU usage.

When the MPEG-4 Facial Animation Parameters (FAPs)
are decoded, the player needs to apply them to a face
model. Our choice for the facial animation method is
interpolation from key positions, essentially the same as
the morph target approach widely used in computer
animation and the MPEG-4 Facial Animation Table
(FAT) approach [ISO14496, Tekalp00]. Interpolation was
probably the earliest approach to facial animation and it
has been used extensively [Parke74, Parke82, Arai96]. We
prefer this one to procedural approaches like [Magnenat-
Thalmann88, Chadvick89, Kalra92, Escher98], and
especially to the more complex muscle based models like
[Platt81, Waters87, Terzopoulos90] for the following
reasons:

• It is very simple to implement, and therefore easy to port
to various platforms.

• It is modest in CPU time consumption

• The usage of key positions (morph targets) is close to
the methodology used by computer animators and
should be easily adopted by this community

The way it works is the following. Each FAP (both low-
and high-level) is defined as a key position of the face, or
morph target. To be consistent with the computer
animation terminology, we will use the term “morph
target” throughout this article. Each morph target is
described by the relative movement of each vertex with
respect to its position in the neutral face, as well as the
relative rotation and translation of each transform node in
the scene graph of the face. The morph target is defined
for a particular value of the FAP. The movements of
vertices and transforms for other values of the FAP are
then interpolated from the neutral face and the morph
target. This can easily be extended to include several
morph targets for each FAP and use a piecewise linear
interpolation function, like the FAT approach defines.
However, current implementations show simple linear
interpolation to be sufficient in all situations encountered
so far. The vertex and transform movements of the low-
level FAPs are added together to produce final facial
animation frames. In case of high-level FAPs, the

Published in the proceedings of Computer Animation 2002.

movements are blended by averaging, rather than added
together.

4.1. Implementation

Due to its simplicity and low requirements, the Facial
Animation Player is expected to be easy to implement on
a variety of platforms using various programming
languages. The implementation we describe here is
written as a Java applet and based on the Shout3D
rendering engine [Shout3D].

We have successfully tested this implementation of the
MPEG-4 Facial Animation Player with several face
models as illustrated in Figure 3. We can achieve
interactive frame rates with models of up to 3000
polygons. The player has correctly interpreted the test
FBA bit streams (Marco, Wow, Emotions) as well as the
bit streams produced by the text-to-speech system. As the
demonstration web page [Pandzic01a] shows, the applet is
fully controllable from the web page by JavaScript,
making all interactions possible. The implementation has
been tested and works robustly in the two major Web
browsers.

Figure 3. Examples of face models

experimentally animated using the player:
dummy, a model built using 3D modelling
software; Miraface, a model donated by

MIRALab, University of Geneva, to ISO as MPEG-
4 reference software; Candide, source Linköping

University; Demy, designed by Sasa Galic;
Jörgen, source Linköping University;
Commander Lake, source 3DS Max.

4.2. Producing Animatable Face Models

In this section we describe our approach to the
production of face models that can be directly animated by
the Facial Animation Player described in the previous
section.

 We believe that the most important requirement for
achieving high visual quality is the openness of the system
for visual artists. It should be convenient for them to
design face models with the tools they are used to. While
numerous algorithmic facial animation systems have been
developed, the best-looking animations in current
productions are done manually by artists or by facial
tracking equipment and performing talent. This manual
creation is painstakingly time-consuming, but some
aspects can be automated.

The concept of morph targets as key building blocks of
facial animation is already widely used in the animation
community. However, morph targets are commonly used
only for high level expressions (visemes, emotional
expressions). In our approach we follow the MPEG-4
FAT concept and use morph targets not only for the high
level expressions, but also for low-level MPEG-4 FAPs.
Once their morph targets are defined, the face is capable
of full animation by limitless combinations of low-level
FAPs.

Obviously, creating morph targets not only for high level
expressions, but also for low-level FAPs is a tedious task.
We therefore propose a method to copy the complete
range of morph targets, both low- and high-level, from
one face to another. This means that an artist could
produce one very detailed face with all morph targets,
then use it to quickly produce the full set of morph targets
for a new face. The automatically produced morph targets
can still be edited to achieve a final detail. It is
conceivable that libraries of facial models with morph
targets suitable for copying to new face models will be
available commercially. The method we propose for
copying the morph targets is called Facial Motion
Cloning. Our method is similar in goal to the Expression
Cloning [Noh01]. However, our method additionally
preserves the MPEG-4 compatibility of a cloned facial
motion and it treats transforms for eyes, teeth and tongue.
It is also substantially different in implementation.

Facial Motion Cloning can be schematically represented
by Figure 4. Inputs to the method are the source and target
face. The source face is available in neutral position
(source face) as well as in a position containing some
motion we want to copy (animated source face). The
target face exists only as neutral (target face). The goal is
to obtain the target face with the motion copied from the
source face – the animated target face.

To reach this goal we first obtain facial motion as the
difference of 3D vertex positions between the animated
source face and the neutral source face. The facial motion
is then added to the vertex positions of the target face,
resulting in the animated target face.

Published in the proceedings of Computer Animation 2002.

In order for this to work, the facial motion must be
normalised, which ensures that the scale of the motion is
correct. In the normalised facial space, we compute facial
motion by subtracting vertex positions of the animated
and the neutral face. To map the facial motion correctly
from one face to another, the faces need to be aligned with
respect to the facial features. This is done in the alignment
space. Once the faces have been aligned, we use
interpolation to obtain facial motion vectors for vertices of
the target face. The obtained facial motion vectors are
applied by adding them to vertex positions, which is
possible because we are working in the normalised facial
space. Finally, the target face is denormalized.

Figure 4: Overview of Facial Motion Cloning

5. Performance results

5.1. Test environment

We have successfully implemented and tested the
system and it is currently available for public trial at
http://lancelot.isy.liu.se.

Server configuration is a very important issue for the
system architecture. Table 1 shows the server
configuration used in the current public trial.

Kernel
version

Microsoft Windows NT,
Uniprocessor Free

Product type Workstation

Product
version 4.0

Service pack 6

Processors 1

Processor
speed 450 MHz

Processor
type

x86 Family 6 Model 5 Stepping 2,
GenuineIntel

Physical
memory 256 MB

IDE standard
(both on disk ATA33

and
motherboard
side

Network
adapter Ethernet 100Mb

Table 1: Server configuration
Physical memory is a critical resource in server
configuration. 256 MB is minimum amount for the normal
prototype functionality. Choosing a right test environment
is very important for producing real test results. Internet
must be an integral part of it. Figure 5 represents the test
environment. Lancelot is a server side in our system
architecture and pci022 is a client side. Table 2 represents
performance results in the given test environment.

Figure 5: Test Environment

Num
ber
of
word
s in
answ
er

Ans
wer
size/
B

Audi
o bit
strea
m
size/
kb

Gene
rate
time/
s

Time
to
answ
er/s

Actu
al
lengt
h of
the
answ
er/s

Band
width
kb/s

2 4 8 4 9.1 1 1.57

5 23 12.9 4 6.6 1.4 4.96

22 141 63.7 11 13.6 7.9 24.50

5 25 13.4 4 7.9 1.3 3.44

7 38 19.2 5 7 2.4 9.60

111 749 406 54 73 52 21.37
Table 2: Performance results

http://lancelot.isy.liu.se/

Published in the proceedings of Computer Animation 2002.

5.2. Test execution

For measuring Generate time (GT) performance
parameter, a test program based on the CGI Fbagen
program was created. The input to the test program were
CGI environment variables. Measurements were
performed "off line". "Off line" means that CGI
environment variables were prepared in Microsoft
Windows batch file and a test program was started using
that batch file on a local computer. The local computer
had to have the same configuration as the Lancelot. One
of CGI environment variables was Alice's generated
answer. The output from the test program was Generate
time (as a duration between the start and end of the test
program) and speech bit stream file.

Time to answer was measured during the connection to
the public trial web page. The test requirement was to
produce the answers used in measuring GT performance
parameter.

5.3. Comments on performance results

Time to answer (TTA) is the most important
performance parameter. It represents duration between the
moment when a user sends its query to the system (by
pressing SEND button or ENTER key) and the moment
when system responds by talking. TTA performance
parameter consists of Generate time (GT) parameter and
time in which the generated answer travels through the
network from the system to the user. In the Table 2 we can
see that most of the TTA parameter is GT performance
parameter. So, performance bottleneck is not the Internet,
but the process that generates real-time answers.

GT parameter also has two components. The first
component is time that Alice system needs to give a text
answer. That time is not the problem because Alice is very
fast. The problem is the second component. Alice's text
answer is the input into CGI Fbagen program. The output
from the Fbagen is data which animates Facial Animation
Player. That data is much heavier than Alice's text answer
and that is the reason why Fbagen is much slower than
Alice.

Bandwidth is calculated as
reamsizeAudiobitst
GTTTA −

 and

we can see that it is not a constant entry. TTA for the short
answers (up to 30 words) in an implemented prototype is
up to 10 seconds. This time is not acceptable for the
practical implementation, but for this version of prototype
it is a good result.

The prototype was tested against ten simultaneous users,
but in the Ericsson Nikola Tesla LAN. Users didn’t notice
any problems in particular workload.

Demy was also presented on Faculty of Electrical
Engineering and Computing (FER) as a part of a lecture at
the department of Telecommunications. Demy was
installed on FER LAN and answers were faster than the
ones on the Testing Environment. Students didn’t mention
the slow answers in their comments. The facts that Demy
was animated, rather intelligent and that could talk were
more important for them.

6. Conclusions and future work

We have implemented a system architecture prototype
that reaches towards the goal of a fully interactive,
human-like, seemingly intelligent conversational virtual
character. Existing software tools have been used. In the
given prototype Facial Animation Player is a wrapper
around A.L.I.C.E. and represents A.L.I.C.E. answers in
more “human” way. Although the implemented prototype
is not the final solution of the design goal, it is very close
to it.

Future work can go in several directions: user interface,
database of AIML files, Virtual Character speech ability,
generating believable non-verbal communication and
synchronising it with speech and technical improvements
in order to bring the system from prototype to production
level.

6.1. User interface

Improvements in user interface should be
reconsidered. In the current prototype, user interface is a
textbox in which a user types his input. In the next
prototype speech recognition interface should be
implemented as an option.

6.2. Virtual Character's speech ability

Facial Animation Player uses a relatively simple
solution for Virtual Character's speech ability. Those are
speech bit stream files generated with Microsoft's SAPI
engine and played from the server's disk. Compression
and streaming of those files is needed for a faster
response. Putting emotions into Demy's talk will be
considered.

Published in the proceedings of Computer Animation 2002.

6.3. Believable non-verbal communication

Facial Animation Player can also play Virtual
Character's facial gestures (anger, surprise, etc.). The
system that is available for public trial plays some
gestures (head noise and blinks), but those gestures are not
dynamically driven by the system answers. They are just
periodically played to make Demy more "human". How to
dynamically generate information for those gesture
animations driven by AIML should be reconsidered.

6.4. AIML database

Database of AIML files represents Virtual Character's
intelligence and knowledge. Some databases for practical
purpose should be created (for example database about
Demy and its creators with explanation of Demy's system
architecture).

6.5. Prototype technical improvements

Speech generation is implemented in the current
application, using Microsoft's SAPI engine which is based
on COM objects. Those COM objects are used in C++
CGI program. Common Gateway Interface is an "old"
technology that is supported by Web servers. But, since
we have already been using Microsoft's COM technology,
IIS (Microsoft's Internet Information Server) should be
reconsidered as a Web server of the system architecture.
IIS provides direct connections with COM objects thus
avoiding CGI interface. Another recognized problem is
that this prototype doesn't work with Netscape Navigator.
Netscape Navigator has problems with Java. The
prototype uses standard Java and the problem is in
Netscape's Java implementation. The prototype works fine
with Internet Explorer.

The prototype with given technical improvements and
enhanced talking ability can be used in several practical
applications: Frequently Asked Questions (FAQ), weather
forecasting, news casting, a virtual salesman, a virtual
administrator, etc.

The system architecture can be easily adopted for the
mobile platforms. The server side looks the same. The
only requirement is that the mobile client supports Java
and that he has fast connection towards the Internet
(General Packet Radio Service GPRS, Universal Mobile
Telecommunications System UMTS).

7. Acknowledgements

This research is partly supported by the VISIT
program of the Swedish Foundation for Strategic Research
(SSF) and by Ericsson Nikola Tesla (ETK).

8. References

[Ahlberg01] “Using the Active Appearance Algorithm for Face
and Facial Feature Tracking “ J. Ahlberg, 2nd International
Workshop on Recognition, Analysis and Tracking of Faces and
Gestures in Real-time Systems (RATFFG-RTS), pp. 68 - 72,
Vancouver, Canada, July 2001.
[Alice], Artificial Linguistic Internet Computer Entity,
http://www.alicebot.org
[AIML], Artificial Intelligence Markup Language,
http://alicebot.org/alice/aiml.html
[Arai96] “Bilinear interpolation for facial expressions and
metamorphosis in real-time animation”, Kiyoshi Arai, Tsuneya
Kurihara, Ken-ichi Anjyo, The Visual Computer, 12:105-116,
1996.
[Beard01], “Usable TTS for Internet Speech on Demand”,
Simon Beard, John Stallo, Don Reid, OzCHI Conference 2001
[Cohen93] M.M.Cohen and D.W.Massaro, "Modeling
Coarticulation in Synthetic Visual Speech." In M.Thalmann &
D.Thalmann (Eds.) Computer Animation'93. Tokyo: Springer-
Verlag.
[Cossato98] Cosatto E., Graf H.P., “Sample-Based Synthesis of
Photo-Realistic Talking Heads”, Proc. Computer Animation ’98,
Philadelphia, USA, pp. 103-110.
[Chadvick89] “Layered construction for deformable animated
characters”, Computer Graphics, 23(3): 234-243,1989
[Eisert97] P. Eisert, S. Chaudhuri and B. Girod, "Speech Driven
Synthesis of Talking Head Sequences," 3D Image Analysis and
Synthesis, pp. 51-56, Erlangen, November 1997.
[Escher98] “Facial Deformations for MPEG-4”, M. Escher, I.S.
Pandzic, N. Magnenat-Thalmann, Computer Animation 98,
Philadelphia, USA, pp. 138-145, IEEE Computer Society Press,
1998.
[Forchheimer83] "Low Bit-rate Coding through Animation",
Robert Forchheimer and Olov Fahlander, Proceedings Picture
Coding Symposium 83
[Forchheimer84] "A Semantic Approach to the Transmission of
Face Images ", Robert Forchheimer, Olov Fahlander and
Torbjörn Kronander, Proceedings Picture Coding Symposium 84
[Garner97], Luigi Caputo, Robby Garner, Paco Xander Nathan,
“FRED, Milton, and Barry: Evolution of Intelligent Agents on
the Web”, AMSE-ISIS 1997, Reggio Calabria, Italy.
[Hutchens98], Jason Hutchens, Michael D. Alder, “Introducing
MegaHAL”, proceedings of the Human-Computer
Communication Workshop, pp. 271-274, 1998.
[Interface] The InterFace project, IST-1999-10036, www.ist-
interface.org
[ISO14496] ISO/IEC 14496 - MPEG-4 International Standard,
Moving Picture Experts Group, www.cselt.it/mpeg

http://www.alicebot.org/
http://alicebot.org/alice/aiml.html
http://www.tormoola.com/pxn/talks/fred1997/doc970531.txt
http://lcg-www.uia.ac.be/conll98/pdf/271274hu.pdf

Published in the proceedings of Computer Animation 2002.

[Kalra92] Kalra P., Mangili A., Magnenat-Thalmann N.,
Thalmann D., Simulation of Facial Muscle Actions based on

Rational Free Form Deformation”, Proceedings Eurographics 92,
pp. 65-69
[Loebner], http://www.loebner.net/Prizef/loebner-prize.html

[Magnenat-Thalmann88] “Abstract muscle actions procedures
for human face animation”, N. Magnenat-Thalmann, N.E.
Primeau, D. Thalmann, Visual Computer, 3(5): 290-297, 1988.
[Magnenat-Thalmann00] Nadia Magnenat-Thalmann, Sumedha
Kshirsagar, "Communicating with Autonomous Virtual
Humans", Proceedings of the Seventeenth TWENTE Workshop
on Language Technolgy , Enschede, Universiteit Twente,
October 2000, pp 1-8.
[Noh01] “Expression Cloning”, Jun-yong Noh, Ulrich Neumann,
Proceedings of SIGGRAPH 2001, Los Angeles, USA
[Pandzic99] "Synthetic Faces: What are they good for?" Igor S.
Pandzic, Joern Ostermann, David Millen, The Visual Computer,
1999.
[Pandzic00] “From Photographs to Interactive Virtual Characters
on the Web”, Igor S. Pandzic, Gael Sannier, Proc. Scanning
2000, Paris, France
[Pandzic01] “Life on the Web”, Igor S. Pandzic, Software Focus
Journal, 2(2): 52-59, John Wiley & Sons, 2001.
[Pandzic01a] ”A Web-Based MPEG-4 Facial Animation
System”, I.S. Pandzic, Proc. ICAV 3D 2001, demonstration at
www.icg.isy.liu.se/~igor/MpegWeb
[Parke74] “A Parametric Model for Human Faces”, F.I. parke,
PhD Thesis, University of Utah, Salt Lake City, USA, 1974.
UTEC-CSc-75-047
[Parke82] “Parametrized models for facial animation”, F.I.
Parke, IEEE Computer Graphics and Applications, 2(9): 61-68,
November 1982.
[Parke96] “Computer Facial Animation”, F.I. Parke, K. Waters,
A K Peters Ltd. 1996, ISBN 1-56881-014-8
[Pearson95] “Development in Model-Based Video Coding”,
Proc. of the IEEE, 83(6): 892-906, June 1995.
[Platt81] “Animating Facial Expressions”, S.M. Platt, N.I.
BadlerComputer Graphics, 15(3): 245-252, 1981.
[Quartz] Quartz Version 6.0, Symbian Technical Paper, Symbian
Developer Network,
www.symbiandevnet.com/techlib/techcomms/techpapers/papers/
v6/over/quartz/index.html
[Shout3D] Shout 3D, Eyematic Interfaces Incorporated,
http://www.shout3d.com/
[VRML] VRML, ISO/IEC 14772-1:1999,
www.web3d.org/fs_specifications.htm
[Tekalp00] “Face and 2-D Mesh Animation in MPEG-4”, Tekalp
M.A., Ostermann J., Image Communication Journal, Tutorial
Issue on MPEG-4 Standard, Elsevier, 2000.
[Terzopoulos90] “Physically-based facial modeling, analysis and
animation”, D. Terzopoulos, K. Waters, Journal of Visualization
and Computer Animation, 1(4): 73-80, 1990.
[Turing50], A.M.Turing, “Computing Machinery and
Intelligence”, MIND the Journal of the Mind Association, vol.
LIX, no. 236, pp. 433-60, 1950
[Wallace00], Richard.S.Wallace, “Don't Read Me: A. L. I. C. E.
and AIML Documentation”,
http://alicebot.org/articles/wallace/dont.html, 2000.
[Weizenbaum66] Weizenbaum, J., "ELIZA - A computer
program for the study of natural language communication
between man and machine", Communications of the ACM 9(1):
36-45, 1966.

[Waters87] “A muscle model for animating three-dimensional
facial expressions”, K. Waters, Computer Graphics
(SIGGRAPH’87), 21(4): 17-24, 1987.
[WIN] W Interactive SARL, www.winteractive.fr

http://www.loebner.net/Prizef/loebner-prize.html
http://alicebot.org/articles/wallace/dont.html
http://www.winteractive.fr/

	Introduction
	System Architecture
	The Artificial Intelligence system
	The Facial Animation Player
	Implementation
	Producing Animatable Face Models

	Performance results
	Test environment
	Test execution
	Comments on performance results

	Conclusions and future work
	User interface
	Virtual Character's speech ability
	Believable non-verbal communication
	AIML database
	Prototype technical improvements

	Acknowledgements
	References

