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ABSTRACT

Being able to convert a given the speech and facial movements
of a given source speaker into those of another (identified) tar-
get speaker, is a challenging problem. In this paper we build on
the experience gained in a previous eNTERFACE workshop to
produce a working, although still very imperfect, identity con-
version system. The conversion system we develop is based on
the late fusion of two independently obtained conversion results:
voice conversion and facial movement conversion.

In an attempt to perform parallel conversion of the glottal
source and excitation tract features of speech, we examine the
usability of the ARX-LF source-filter model of speech. Given
its high sensitivity to parameter modification, we then use the
code-book based STASC model.

For face conversion, we first build 3D facial models of the
source and target speakers, using the MPEG-4 standard. Facial
movements are then tracked using the Active Appearance Model
approach, and facial movement mapping is obtained by impos-
ing source FAPs on the 3D model of the target, and using the
target FAPUs to interpret the source FAPs.
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1. INTRODUCTION

This eNTERFACE’07 project is a continuation of a project star-
ted during eNTERFACE’06 in Dubrovnik [1], in which we aimed
at converting a given source speaker speech and facial move-
ments into those of another (identified) farget speaker. Such
a conversion is typically based on some (separate) parametric
models of the speech and facial movements for both speakers
(Fig. 1). Two streams of (time-varying) parameters (one for
the speech model, one for the face model) are first estimated
from an audio-video file of the source speaker; some of these
parameters are modified using mapping functions; the modified
parameter streams are finally converted into an audio-video file
which should hopefully be identified as originating from the tar-
get speaker.

The final quality of the conversion therefore depends on the
quality of the rendering obtained by the parametric models and
on the efficiency of the mapping functions, which both result
from design choices.

Rendering quality can easily be estimated by copy-synthesis
experiments: one takes an audio-video file as input, estimates
parameters and performs rendering without modifying the pa-
rameters. Errors can be due to modeling errors (the model is

51

not able of capturing all the details in the data) and/or to esti-
mation errors (the model, when used for rendering, is capable
of producing perfect copysynthesis if it is fed with some opti-
mal parameter stream, but the parameter estimation algorithm
cannot find the best parameter values). This leads to a classical
modeling tradeoff: if too simple, a model lends itself to mod-
eling errors; if too complex, it minimizes modeling errors but
opens the doors to estimation errors.

Mapping should produce a sensation of identity conversion
while not degrading too much the rendering quality obtained
with copy synthesis. Here again, a tradeoff usually has to be
made: while applying smoothed mapping preserves copy-syn-
thesis quality, it only partially produces identity conversion; con-
versely, applying hard mapping modifies the impression of iden-
tity but often significantly degrades quality [2].

In addition to being dependent on the models and mapping
methods they use, speaker conversion systems are characterized
by the type of data they are based on. Mapping functions are
usually trained from aligned data between source and speaker,
although a new trend is to design mapping functions from source
and target speakers not uttering the same sentences.

Conversion approaches also differ by the assumptions they
make on the size of the available data from the source and speaker,
for training the mapping functions. Being able to train an effi-
cient mapping function from limited data is more challenging
(and often closer to real applications).

In this project, it is assumed that a large amount of aligned
speech data can be recorded from both the source and target. As
a matter of fact, even in such advantageous conditions, the state-
of-the-art in voice conversion has not yet reached a level which
would make it a widely usable tool for commercial applications.
In contrast, we assume that only a photo of the target speaker
is available. A typical application of this project is therefore
that of a human actor controlling the speech and facial move-
ments of a 3D character whose face and voice is well-known to
the audience, and from whom a large amount of speech data is
available.

The paper is organized as follows. Section 2 summarizes
the speech model and mapping function we tested in [1] and
examines the new choices made in this year’s project. In Section
3, we summarize the face model and mapping function (which
has not changed from [1]). Experiments using these models and
mappings (using the eNTERFACEO6_ARCTIC database created
last year ') are detailed in Section 4, followed by an analysis of
our results, and perspectives, in Section 5.

Thttp://www.enterface.net/enterface06/docs/results/databases/
eNTERFACEO6_ARCTIC.rar
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Figure 1: Principles of speaker identity conversion, using source speech and facial movements, mapping them to target speech and

face, and producing target-like speech and facial movement.

2. SPEECH ANALYSIS, MAPPING, AND SYNTHESIS
FOR VOICE CONVERSION

In [1], a number of choices had been made relatively to the mod-
eling and mapping trade-offs mentioned in Section 1.

Speech was modeled using Residue Excited Linear Predic-
tion (RELP), which has the advantage of providing transparent
copy synthesis, but consequently provided few means of map-
ping the glottal source signals from source to target speaker. A
mapping function was then applied, frame-by-frame, on the vo-
cal tract filter of the source,

1/As(z), based on Gaussian Mixture Models (GMM) of the
source and target Mel-Frequency Cepstrum Coefficient (MFCC)
distributions [3] (Fig. 2). This produced an estimate of the vo-
cal tract filter of the target, 1/A:(z). The original part of this
speech conversion system resided in an additional mapping step.
In order to increase the acoustic similarity between converted
speech and target speech, we used a large database of target
speech, and applied a units selection principle, similar to that
used in unit selection for text-to-speech synthesis: we searched
in the target database for a sequence of real target vocal tract
filters { 1/A+(z) } whose distance to the sequence of mapped
filters { 1/A;(z) } was minimized. The search for optimal tar-
get sequences was based on dynamic programming, for addi-
tionally optimizing the length of the real target filter sequences
used (in order to avoid discontinuities when switching from one
sequence to another). Converted speech was finally obtained by
filtering some excitation signal with the sequence of real target
vocal tract filters { 1/A:(z) }.

One of the main conclusions of [1] was that, if the rarget
speaker LP residual was filtered by the sequence of mapped vo-
cal tract filters { 1/A;(z) } the converted speech sounded like
“processed” target speech, and was therefore clearly identifiable
as originating from the target speaker (but its quality was some-
how discontinuous)”. In contrast, when the source speaker LP
residual was used to drive the sequence of mapped vocal tract
filters (as in Fig. 2), a lot of the source speaker identity was

ZNotice that, since the length of the source and target files were gen-
erally different, using target speaker excitation with modified source
speaker vocal tract parameters implied to perform some alignment of
the source and speaker files. This was achieved by applying Dynamic
Time Warping (DTW) between source and target utterances.
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Figure 2: Voice conversion in [1].

retained in the converted speech.

This led us to focus initially this year on source/tract sep-
aration, with separate mappings for source and tract parame-
ters. The main initial idea was to use a recently developed
source-tract model, the so-called AutoRegressive eXogeneous
Lijlencrants-Fant model (ARX-LF) [4]. We also tested another
mapping function (other than the one used in [1]), called STASC
[2] and based on a simpler algorithm than [3] while still produc-
ing efficient vocal tract mapping.

2.1. ARX-LF

The source-filter model of speech production hypothesizes that
a speech signal is formed by passing an excitation through a
linear filter. In physiological terms, the excitation refers to the
signal produced at the glottis and the filter represents the res-
onances caused by the cavities in the vocal tract. Linear pre-
diction analysis is a basic source-filter model which assumes a
periodic impulse train as the source signal for voiced sounds
and white noise for unvoiced speech. Most voice conversion
frameworks assume an LPC based analysis-synthesis approach,
where only the LPC-based parameters are converted and excita-
tions are left untouched. More elaborate parametric models of
the excitation do exist and are interesting in terms of joint vocal
tract and source conversion. In our experiments we have chosen
to evaluate the LF model which models the voiced excitation by
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approximating the glottal flow derivative (GFD) with three pa-
rameters. Figure 3 illustrates a GFD waveform generated by the
LF model. The three parameters of interest are open quotient,
asymmetry coefficient and closed phase quotient.
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Figure 3: Glottal flow derivative produced by the LF model.

With the adoption of LF glottal pulse, the speech signal can
then be expressed by an ARX (auto regressive exogenous) pro-
cess [4]:

p

Z a(k)s(n — k) +u(n) + e(n)

k=1

s(n) = (1)

where u is the LF waveform and e is the residual noise
and a(k) are the coefficients of the pt" order filter represent-
ing the vocal tract. Once an LF waveform is found for a given
speech frame, deriving the filter coefficients is a trivial task. For
ARX-LF analysis we have used an implementation based on the
work of A. Moinet and N. D’Alessandro. Our implementation
does not incorporate a residual noise factor, therefore e(n) is
always 0 when synthesizing speech with our implementation of
the ARX-LF model. The steps of the ARX-LF analysis can be
summarized as follows:

1. Extract pitch at regular intervals (Sms) from the wav file.

2. Find the point of initial glottal closure instant (GCI) in
each voiced segment in the utterance.

3. Use the first GCI as the anchor point to determine the re-
maining glottal closure instants in each voiced segment.

4. For each pitch period, search an LF derivative waveform
codebook for the waveform which minimizes the error
between actual speech frame and the ARX-LF synthe-
sized frame.

5. Obtain the parameter set which produced this waveform
(this is stored in the LF derivative waveform codebook,
along with each waveform).

6. Given the LF parameter for each frame, determine the
filter coefficients.

2.2. STASC

Speaker Transformation Algorithm using Segmental Codebooks
(STASC) converts the voice of a source speaker to that of a target
speaker maintaining high speech quality [2]. Figures 4 and 5
schematically depict training and conversion stages of STASC
which are briefly described below.

2.2.1. Training

First, alignment between the same sentences from source and
target speaker is automatically performed by aligning Sentence
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HMMs for the (source, target) utterance pairs [2]. An advan-
tage of this model is that it doesn’t require any knowledge of
the text or the language spoken. In every frame of source and
target speech, acoustic feature vectors are extracted, including
MFCCs, logarithm of energy and voicing probability - as well
as their delta coefficients (18 features in total). For each source
speaker utterance, the segmental k-means algorithm initializes
an HMM whereas Baum-Welch algorithm is employed for train-
ing. Both source and target speaker utterances are force-aligned
with this HMM using the Viterbi algorithm. A new state is
added to the HMM topology every 40 ms of source speaker
utterance. The mapping between the acoustic parameters of
source and target speakers can subsequently be obtained based
on this aligned data. For each HMM state, line spectral frequen-
cies (LSF), fundamental frequencies (Fp), durations, energy and
excitation parameters are computed. Their mean values over the
corresponding source and target HMM states are stored in the
source and target codebooks, respectively.
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Figure 4: Training stage flowchart of STASC.

2.2.2. Conversion

Vocal tract and excitation characteristics are independently mod-
ified. Line spectral frequencies (LSF) are selected to represent
vocal tract characteristics of each speaker since they are closely
related to formant frequencies and, moreover, they can be reli-
ably estimated. After pitchsynchronous linear prediction (LP)
analysis of source speaker utterance, LP parameters are con-
verted to LSFs.
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Figure 5: Conversion stage flowchart of STASC (after [2]).

The (weighted) distance d,,, between the LSF vector u of
the input source frame and the m** source codebook LSF vector
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is given by the following equations:
p
dm:an|unfonn\form:1,~--,M 2)
n=1

1
kn, = - ,m=1,---,P (3)
argmin(|un — Un—1l],|tn — Un+1|)

where m is the codebook entry index, M is the codebook
size, n is the index of LSF vector entries, P is the dimension of
LSF vectors (order of LP analysis), u,, the nth entry of the LSF
vector for the input source frame, C3,,, is the nt" entry of the
m!" source codebook LSF vector, and k,, are the LSF weights.

STASC further estimates the vocal tract characteristics of
the target speaker, i.e. the n'" entry of the estimated target LSF
vector Yn:

M
Un = Zv”‘Cﬁmforn: 1,---,P

m=1

“

Y th

where C?,,, is the n*" entry of the m!" target codebook
LSF vector, v™ are the normalized codebook weights, and alV'
is used to show that W is obtained through weighted average of
codebook entries. The target LSF vector 4, is converted into tar-
get LP coefficients in order to obtain target vocal tract spectrum
H*(¢) (where ¢ is the angular frequency in radians. The fre-
quency response H"V7'(¢) of the time-varying vocal tract filter
for the current frame is then given by:

VT H'(9) VT H'(¢)
O =) 19 = g
where the source vocal tract spectrum can be estimated us-
ing either the original or “estimated” LP coefficients (see [2] for
details).
The frequency-domain pitch synchronous overlap-add algo-
rithm (FD-PSOLA) is finally used for adapting the pitch of the
source to the pitch range of the target.

(6))

3. FACIAL EXPRESSION ANALYSIS, MAPPING AND
SYNTHESIS FOR FACE ANIMATION

Starting from video samples (face and shoulders) of the source
speaker, and a photograph of the target speaker, we want to pro-
duce video samples of the target speaker acting and speaking as
the source speaker.

Solving such a problem implies the following steps: (1) an-
alyze the facial movements of the source speaker, using some
parametric 3D facial model; (2) estimate the parameters of the
same 3D model for the target speaker (3) normalize the facial
movements of the source speaker relatively to some biometrical
features of his face (4) animate the target 3D model by apply-
ing the same relative face movements as those measured on the
source speaker.

While we had only considered steps 1, 3, and 4 in our pre-
vious work [1], by using an avatar that was already available
(without having to build an avatar corresponding to an identified
target speaker), this year’s project browsed all 4 steps.

3.1. Face modelling

The parametric 3D facial model used in our project is the one
defined in the MPEG-4 standard [5]. It is composed of Fa-
cial Definition Parameters (FDPs), which define the 3D position
of a number of reference points on the face, Facial Animation
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Parameters (FAPs), which define frame-byframe define move-
ments of those reference points °.

3.2. Facial movement mapping

Face movement mapping is made easy by the fact that FAPs are
actually not sent as absolute movements, but rather as move-
ments normalized by the so-called Facial Animation Parame-
ter Units (FAPUs), which can be obtained from the FDPs (they
are basically some important biometric features, such as inter-
ocular distance, mouth width, etc.). Applying measured face
movements from source face to target face is thus as simple as
imposing source FAPs on the 3D model of the target, and using
the target FAPUs to interpret the source FAPs.

3.3. Face analysis

In [1], the analysis part mainly consisted in three tasks: de-
tecting and tracking the face region, extracting facial features
such as lips, nose, eyes and brows, and tracking these features
throughout the source video.

The first part of analysis was done by computing an ellipse
outlining the face. The ellipse parameters were estimated from
an optical flow [6]. The centre of the ellipse, approximating the
centre of the head, was used to track global head movements by
assuming that the head centre moves around a sphere situated
on the top of spinal cord. By projecting the displacement of the
head onto this sphere, the angles of head rotation (pitch, yaw
and roll angles) were approximately estimated.

The next task was to define and track the useful feature
points for face components, which are lips, eyes, and eyebrows
in this scenario. For this purpose, Active Appearance Model
(AAM) approach [7] was used as a means of modeling and
tracking the face components. Since AAMs require model train-
ing phase before they are used to process entire sequence of
frames of a given video, a set of frames which cover a wide
range of different facial expressions was selected and used to
train the AAM. This training step requires manual labeling of
feature points located around the desired face components over
all frames in the training set. After the model was created by us-
ing the set of manually labeled points, feature tracking for face
components could be performed easily. From the position of this
feature points and global head movements, facial animations pa-
rameters were computed.

In this year’s project, we focused on improving the global
head movement tracking. In [1], global head movements and fa-
cial feature tracking were independent tasks. A way to improve
the approximation of head rotation angles is to exploit features
tracked from the AAM, especially rigid features such as eyes
corners or point located at the beginning of the nose, between
nostrils.

As we don’t know the depth of these points it is not pos-
sible to directly compute rotation angles. In [8], the 2D image
coordinates of feature points are mapped to 3D by assuming the
projection is approximately scaled orthographic. Another solu-
tion is to compute an orthogonal projection of the centre of the
head on the plane defined by the three points and compute rela-
tions between them. When the face is in a frontal position, the
centre and its projection are one and the same in 2D.

Consequently, to compute relations between the eyes cor-
ners, the bottom of the nose and the head centre, we used a
frontal head pose picture of the source. As the 3D rotation

3Notice that how the movement of each reference point influences
the final face rendering is not defined by MPEG4. Each face rendering
software does it its own way.



Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, Istanbul, Turkey, July 16 - August 10, 2007

change angles and distances in 2D, we used ratios between fea-
tures points to find points necessary to localize the centre.

Let RE be the corner of the right eye, LE the corner of the
left eye, N the bottom of the nose and C the center of the head
(Fig. 6). Let RELE be the straight line defined by RE and LE,
NRE the straight line defined by RE and N, REC the straight line
defined by RE and C, and LEC the straight line defined by LE
and C. Let [-ec—nre be the intersection between REC and NRE,
and Ijcc—nre be the intersection between LEC and NRE. The
following ratios are then computed:

d(Irecfnre; 7‘6)
d(re,n)

d(-[lec—nre, le)
d(le,n)

Ry = s Re = Q]

where d is the Euclidian distance. For each frame, R; and
R are used to find the position of each intersection points on the

corresponding segments and from the location of these points,
the 2D coordinates of the head centre projection are computed.

Figure 6: Relations between the three feature points and the
center of the head.

To compute the depth of the centre and the rotation angles,
we used the same method as in [1].

4. EXPERIMENTS AND RESULTS

In order to design the application depicted in Figure 1, we needed
to choose a source and target speaker, make sure we could have
access to a large amount of speech from the target (for the speech
synthesis module), of a reasonable amount of aligned speech
data for source and target (for the voice mapping module), and
of some test speech and video data from the source (in order
to test the complete system). The eNTERFACE06_ARCTIC
database meets these requirements for the source speaker. It is
composed of 199 sentences, spoken by one male speaker, and
uniformly sampled from the CMU_ARCTIC database [2]. For
each sentence, an .txt, a .avi, and a .wav file are available. The
.avi file contains images with 320x240 pixels (Fig. 3), 30 frames
per second, of the speaker pronouncing the sentence (Fs=44100
Hz). The .wav file contains the same sound recording as in the
.avi file, but resampled to 16 kHz.

In the next paragraphs we expose the results we have ob-
tained with the ARX-LF model and the STASC algorithm; we
also report on an improvement we have made to the face analy-
sis module of [1], and we show results related to modeling the
target face, and to animating it.
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4.1. ARX-LF

Copy synthesis experiments were carried out using the ARX-LF
framework (Fig. 7). Here we discuss an informal evaluation of
the stimuli.

4.1.1. Copy-synthesis with fixed excitation

In this very simple copy synthesis experiment, a random LF pa-
rameter set was chosen from the codebook and the same pa-
rameter set was copied to produce all the voiced frames of an
input utterance. The purpose of this experiment was twofold:
to assess the quality of analysis-resynthesis when the source pa-
rameters are modified independently from the filter coefficients
and to make an informal evaluation of how much difference in
voice quality is perceived when different LF parameter sets are
copied throughout an utterance.

The quality of the resynthesis with fixed excitation was ac-
ceptable and did not result in many artifacts. There were also
perceived differences in voice quality between some parame-
ter sets of the codebook, particularly regarding the breathiness
and brightness of the voice. However, there were also many
codebook entries which produced no perceptual difference when
copied throughout an utterance. This led us to become more
skeptical about the potential contribution of LF parameters to
speaker identity.

4.1.2. Transplantation of target speaker features to source
speaker

Since the results of last year’s project indicated the existence of
a lot of speaker specific information in the residual, our goal
was to code some of that information with the LF parameters
using the proposed framework. Therefore a natural experiment
to conduct was to align the source and target frames in a parallel
utterance and copy the relevant parameters of the target onto the
source.

We have compared versions of utterances where only the
filter coefficients were copied over, versus ones where both fil-
ter coefficients and LF parameters were copied over. We found
that for our speaker conversion task, the speaker identity was
still mostly coded in the filter coefficients and copying the LF
parameters made no perceptual difference in terms of speaker
identity. In fact, changing only the LF parameters of the source
frames to match those of the target resulted in a stimulus which
sounded very much like the source. This again clearly questions
the correlation between of LF parameters and speaker identity.

In addition, we have tried copy-synthesis experiments on an
emotion conversion task using an expressive speech corpus from
a female speaker. For neutral to angry copysynthesis on stimuli,
we also found that most of the harshness of anger was coded in
the filter parameters rather than the source. On the other hand,
going from neutral to sad speech, there was a positive contribu-
tion of the LF parameters to perception of sadness.

There are possible reasons why the ARX-LF framework
may not have helped as well as we initially hope. We list them
here, for future work:

e Glottal waveforms do not contain as much voice quality
information as expected.

e It is possible that the current parametric framework is
not adapted to model important voice quality informa-
tion such as spectral tilt. (A suggestion here is to apply
pre-emphasis to the speech signal during analysis so as
to flatten the vocal tract spectrum and force the modeling
of spectral tilt in the LF parameters.)



Proceedings of the eNTERFACE’07 Workshop on Multimodal Interfaces, Istanbul, Turkey, July 16 - August 10, 2007

(@ (b)

© (@

Figure 7: An example of ARX-LF analysis-synthesis: (a) orig-
inal speech frame; (b) Estimated Glottal derivative waveform;
(c) Frequency response of the estimated vocal tract filter; (d)
resulting synthetic speech frame.

e Adding a component modeling residual noise may help.
Probably this component is not even really noise-like.

e A better automatic GCI detection algorithm is crucial for
this implementation but for the experiments performed
here, the GCIs were manually corrected for best analy-
sis/resynthesis results.

e The codebook of LF parameters may be expanded to con-
tain more extreme parameter values and with higher res-
olution.

4.2. STASC

We reimplemented the STASC voice conversion system descri-
bed previously. Although the implemented system is very simi-
lar to the one described in [2], some differences exist. We had at
our disposal a sentence HMM alignment that has been produced
as described in [2]*. Instead of using the average of HMM state
features as elements of the mapping codebook, we converted the
alignment into a frame-to-frame alignment, leading to a frame-
based mapping codebook of LSF parameters, F0 and energy. We
then cleaned this codebook by using the spectral distance con-
fidence measure, the FO distance confidence measure and the
energy distance confidence measure described in [2]. The orig-
inal codebook counts 81870 pairs of frames while the cleaned
codebook contains 69076 pairs. The frame length is 30 ms, with
a shift of 10 ms. The second difference occurs in the conversion
step, where we do not compute AR coefficients on pitch syn-
chronous frames, but also on 30 ms length frames, shifted every
10 ms. Two types of tests have been made, referenced below as
method a and method b.

Method a is depicted in Fig. 8. LSF coefficients are com-
puted for each frame of the source utterance. The N nearest
codebook entries are selected, and a weighted sum of corre-
sponding target LSF coefficients is computed. LSF coefficients
of the source and of the target allow, after conversion into AR
coefficients, to build the corrective filter as the division of the
vocal tract frequency response of the target by that of the source.
Each source frame is then filtered by the corrective filter. Speech
is resynthesized by overlap-adding the resulting voice-converted
frames.

4They have been added to the in the eNTERFACEO6_ARCTIC
archive.
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Figure 8: Conversion method a.

In order to better check the efficiency of the vocal tract con-
version, another synthesis method has been implemented. This
method cannot be seen as a genuine conversion system, as it
uses the target utterances, but its results give an idea on how
well the vocal tract (alone) is transformed from one speaker to
another. It uses the target LP residual, and filters it with LSF
codebook outputs converted into AR coefficients. The system is
represented in Fig. 9.
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Figure 9: Conversion method b.

In theory, if the codebook-based mapping of the valv tract
from source to target was perfect, the approximated target speech
should be identical to the target speech.

Notice that, as we use the source frames to find the approx-
imated LSF coefficients of target frames and then use the target
wavefile for synthesis, source frames and target frames need to
be aligned. This alignment is done by dynamic time warping,
using the implementation provided by Dan Ellis °.

Method a, the real conversion test, leads to a very good qual-
ity, but the identity change is incomplete: it moves from source
to something between source and target voices, but still closer to
the source. A pitch modification of 10 percent on the converted
speech improves a bit the similarity with the target speaker. This
pitch modification was done using Praat® software.

Method b lead to a much better similarity with target speaker
(but again, we are using the target excitation, so tests a and
b cannot be compared) although the quality of the converted
speech is degraded. Actually, the quality and similarity of the
converted voice is somehow similar to the ones obtained from
eNTERFACEOQ6 project 4 [1], but the algorithm used this year is
very much simpler.

4.3. Face modeling

One of the tools we used for face modelling was the PhotoFit
software. This software produces a 3D head model of a person
from the person’s photograph, as shown in figures 10 and 11.
It also needs an FDP file that corresponds to this photograph.
FDP file can be created using the visage|annotator software. It
displays input 2D picture and automatically detects and marks
the feature points in the face. After that some points can be
manually corrected. Positions of these points correspond to the
positions of the MPEG-4 facial Feature Points (FPs) [9].

Shttp://labrosa.ee.columbia.edu/matlab/dtw/
Shttp://www.fon.hum.uva.nl/praat/
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Figure 10: Input photograph of the source speaker and gener-
ated 3D head model by PhotoFit.

PhotoFit basically takes a generic 3D head model and de-
forms it in such a way that labelled feature points fit to their
positions taken from the FDP file. Other points of the model are
also moved so that they form a smooth surface of the face with
labelled feature points.

Generation of the facial skin textures from uncalibrated in-
put photographs as well as the creation of individual textures
for facial components such as eyes or teeth is addressed in [10].
Apart from an initial feature point selection for the skin textur-
ing, these methods work fully automatically without any user
interaction. The resulting textures show a high quality and are
suitable for both photo-realistic and real-time facial animation.

Figure 11: Input photograph of the target speaker and generated
3D head model by PhotoFit.

The 3D input mesh is parameterized over the 2D domain
(0,1) x (0,1) (part of R? ) in order to obtain a single texture
map for the whole mesh. In [10], the face mesh is topologically
equivalent to a part of a plane, since it has a boundary around
the neck and does not contain any handles. The face mesh can
be “flatten” to a part of a plane that is bounded by its boundary
curve around the neck. PhotoFit uses described methods to cre-
ate facial skin textures, but it parameterizes a mesh with a cube
instead of a disk.

It is important to mention that the 2D input picture should
be a frontal photograph of the person, and should contain the
person’s face and shoulders. Also, the face should be in the
neutral position according to the MPEG-4 FBA specification.
If the person on the picture has an expression it will keep that
expression through the whole animation, i.e. if the person is
smiling generated model will always be smiling.

4.4. Face analysis

In [1], each frame in the training set had been manually labeled
with 72 landmarks by using the AAM-API software [8] (freely
available for non-commercial use such as research and educa-
tion). In order to obtain an accurate mapping from the 2D pixel
positions to the MPEG-4 parameters, the annotation of the im-
ages in the training set should closely match the MPEG-4 FDPs.

The global head movements and the feature points tracking
were done on 10 videos. To compute the head ellipse, OpenCv
Lib (available on the Intel website) has been used. The calcu-
lated values for animation has been smooth, since the measure-
ments in the tracking process are noisy and small scale differ-
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ences in the parameters for the simulation process may have
large effects in the resulting animation. A Kalman Filter was
used for this purpose with a state model consisting of positions
and velocities of all the key feature points on the face. Fig. 12
shows the results of the global head movements tracking. On
the whole, we have noticed an improvement in the head center
tracking. The new method is also more robust and has allowed
to eradicate big errors due to the use of the optical flow (Fig.
13).

4.5. Face synthesis

We created 10 animations using XFace interface which is an
MPEG-4 based open source toolkit for 3D facial animation, de-
veloped by Balci [11]. This is a straightforward process: once
the FAP values have been computed, the XFace editor (or any
other suitable player) can directly synthesize them (given that
the parameters file format is correct). Fig. 14 shows the results
of the generation of an animation with Xface. The animation is
not only depending of the computation of the FAPS, and conse-
quently of the quality of the tracking, but also of the 3D model.

Figure 12: Results of the global head movements tracking .The
ellipse and the green point are the results of last year, red points
is the new tracking method.

Figure 13: Errors occurring with the ellipse computed from the
optical flow.
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Figure 15: (Top) Frames extracted from a video of the source speaker; (Center) Frames obtained by animating a 3D model of the
source; (Bottom) Frames obtained by animating a 3D model of the target.

Figure 14: Animation created with XFace.

4.6. Face synthesis

PhotoFit uses commercial software visage|SDK [7] for anima-
tion and rendering of the generated model. visage|SDK is a
Software Development Kit for MPEG-4 character animation. It
includes the following main capabilities:

e Animating virtual characters using MPEG-4 Face and
Body Animation Parameters (FAPs and BAPs).

e Real-time or off-line character animation driven by SAPI-
5 speech synthesis, with on-the-fly rendering of the vir-
tual character and MPEG-4 FBA bitstream output.

e Real-time or off-line lip sync from audio file or micro-
phone, with on-the-fly rendering and MPEG- 4 FBA out-
put.
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e Interfaces for plugging-in own interactive or offline ani-
mation sources and controls.

e Coding, decoding, merging and other operations on MPEG-
4 FBA (Face and Body Animation) bitstreams.

The analysis tool built during eNTERFACE’06 produces
ASCII FAP files, and visage|SDK reads binary FBA files. To
connect these two tools we had to write code that reads FAP
files and calls visage|SDK functions for applying read values of
FAPs to the generated model. Animated models of source and
target speaker models are shown in figure 15.

5. CONCLUSIONS

In this paper we describe a multimodal speaker conversion sys-
tem, based on the simultaneous use of facial animation detec-
tion, 3D talking face synthesis, and voice conversion. We first
try to take advantage of a recently developed source-filter esti-
mation algorithm, namely the ARX-LF model, to perform par-
allel conversion of voice source parameters and of vocal tract
parameters. Copy synthesis using ARX-LF gives acceptable
results (although the resulting quality is very sensitive to GCI
detection stability), but transplanting target parameters into a
source utterance leads to very irregular speech quality.

We then test L. Arslan’s STASC algorithm, in a simplified
implementation. The results are much more stable, although the
ID conversion is still incomplete.

Face conversion is based, as initiated in [1], on the MPEG4
FPSs, FAPS, and FAPUs. After modeling the source and the
target speaker faces with the PhotoFit software, we drive the
speaker 3D face model using the FAPs of the source. We have
also improved the face tracking algorithm, by computing the
global head position from the positions of the eyes and nose
rather than by simplifying the face shape into an ellipsis.

The results we have obtained so far are more complete then
those obtained in [1], although there is still much room for im-
provement.

The face tracking algorithm still provides only an approx-
imation of the source speaker movements. The face rendering
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systems we have tested do not prevent the synthetic face from
performing impossible facial movements. Last but not least, the
voice conversion algorithms still provides better ID conversion
if we keep the target LP residual untouched, which seems to
shows that the LP residual still contains some of the speaker
identity (although the opinion of all team members did not con-
verge on this last conclusion).
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