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Abstract 
We propose a method for automatically copying facial motion from one 3D face model to another, 
while preserving the compliance of the motion to the MPEG-4 FBA standard. Despite the enormous 
progress in the field of Facial Animation, producing a new animatable face from scratch is still a 
tremendous task for an artist. Although many methods exist to animate a face automatically based 
on procedural methods, these methods still need to be initialized by defining facial regions or 
similar, and they lack flexibility because the artist can only obtain the facial motion that a particular 
algorithm offers. Therefore a very common approach is interpolation between key facial 
expressions, usually called morph targets, containing either speech elements (visemes) or emotional 
expressions. Following the same approach, the MPEG-4 Facial Animation specification offers a 
method for interpolation of facial motion from key positions, called Facial Animation Tables. Our 
method automatically copies the motion of vertices, as well as geometry transforms, from source 
face to target face while maintaining the regional correspondences and the correct scale of motion. 
It requires the user only to identify a subset of the MPEG-4 Feature Points in the source and target 
faces. The scale of the movement is normalized with respect to MPEG-4 normalization units 
(FAPUs), meaning that the MPEG-4 FBA compliance of the copied motion is preserved. Our 
method is therefore suitable not only for cloning of free facial expressions, but also of MPEG-4 
compatible facial motion, in particular the Facial Animation Tables. We believe that Facial Motion 
Cloning offers dramatic time saving to artists producing morph targets for facial animation or 
MPEG-4 Facial Animation Tables. 

Keywords: facial animation, morph targets, MPEG-4, FBA, VRML, text-to-speech, virtual 
characters, virtual humans 

Introduction 
The term animatable face model would hardly win an elegant-wording contest, but it is often used 
for a 3D face model with all additional information necessary to animate it using a particular facial 
animation system. An animatable face model is capable of being animated by a stream of parameters 
producing facial animation on a particular animation system. We will use another non-elegant term, 
dumb face model, to describe a face model that does not include the necessary animation-related  
information and therefore can not be animated directly. A dumb face model is essentially a plain 
polygon mesh looking like a face. 

Producing an animatable model from a dumb model is not a trivial task. The complexity of the task 
depends on the facial animation system used. Early systems like [Parke74], as well as a surprising 
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number of much more recent systems, are almost hard-coded to a particular face model that they are 
built upon, and it would be very hard to adapt a new face model to such systems. 

The procedural face animation systems like [Magnenat-Thalmann88, Chadvick89, Kalra92, 
Escher98] usually allow more flexibility. For example, [Kalra92] needs a definition of facial regions 
in order to make a face model animatable. This is certainly a good approach as it allows any facial 
model to be animated; however the definition of regions requires a fair amount of work. The more 
complex muscle based models like [Platt81, Waters87, Terzopoulos90] typically need even more 
adaptation on the face model. 

The MPEG-4 Facial Animation standard (see next section for an overview) specifies the motion of a 
small number of points on the face, leaving the rest to the particular implementations. Therefore, 
most of the previously mentioned methods can be made MPEG-4 compatible and indeed, many 
facial animation algorithms created specifically for MPEG-4 are direct descendants of the previous 
procedural approaches. As an example, [Lavagetto99] requires a definition of facial feature points 
and their regions of influence to make a face model animatable. 

A very popular approach to making animatable face models is the use of morph targets. This is a 
method widely used in the computer animation community and its use is by no means limited to 
faces. In the context of facial animation, it means defining a number of key positions of the face by 
displacing its vertices. These key positions are called morph targets. The animation system then 
interpolates the vertex positions between the morph targets. Traditionally, morph targets are used for 
high-level facial motions like visemes or expressions, like in [Arai96]. However, they have been 
succesfully extended to low-level facial motions, in particular the MPEG-4 Facial Animation 
Parameters [Pandzic01]. It can be remarked that the MPEG-4 Facial Animation Tables are in fact 
morph targets, although the MPEG-4 specification does not use such terminology. 

Producing morph targets is  obviously a tedious manual task for the animator. Even just 10 basic 
mouth positions and a few expressions require a tremendous amount of work. If we extend this to 
the full set of high- and low-level MPEG-4 FAPs, 88 morph targets need to be manually 
constructed. Obviously, this is a much higher volume of work than defining facial regions or points 
for procedural approaches. On the other hand, morph targets have a tremendous advantage: they let 
the artist completely control the final appearance of animations, whereas the procedural models do 
not leave such liberty and may leave the animator unsatisfied. For example, if a particular 
procedural system does not produce wrinkles, the face will never have any. With morph targets, the 
animator designs wrinkles exactly where he/she wants them to appear. 

Can we keep this advantage of the morph target approach, but reduce the amount of work needed? 
Yes. That is the point of this article. We propose Facial Motion Cloning (FMC), a method to copy a 
whole set of morph targets from one face to another. Thus one carefully produced animatable face 
can serve as a template for a very fast production of another animatable face, starting with a dumb 
model. Conceivably, libraries of animatable models may become available, letting the artist choose 
the kind of animation desired (e.g. wrinkles or no wrinkles). 

A very similar idea has recently been proposed in [Noh01] and termed Expression Cloning (EC). 
The major differences between FMC and EC are the MPEG-4 compatibility of our approach, 
support of eye, teeth and tongue movements, solution to problems appearing when cloning between 
models of different mesh density, as well as numerous implementation differences. We analyze 
these differences in the Discussion section. 
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In the next section we briefly introduce the MPEG-4 Facial Animation, as necessary for the 
understanding of this article. The main part of the article explains in several subsections the steps of 
the Facial Motion Cloning method. We finish with Results and Discussion sections. 

Introduction to MPEG-4 Facial Animation 
Beside the standard itself [ISO14496], there are other excellent references [Tekalp00] [Escher98] 
covering the subject of MPEG-4 Facial Animation. The purpose of this short section is therefore not 
to offer in-depth coverage, but to provide just enough background for understanding the rest of the 
article. Readers familiar with MPEG-4 FA may wish to skip this section, or use it only as a quick 
reference.  
The MPEG-4 specification defines 64 low-level Facial Animation Parameters (FAPs) and two high-
level FAPs. The low-level FAPs are based on the study of minimal facial actions and are closely 
related to muscle actions. They represent a complete set of basic facial actions, and therefore allow 
the representation of most natural facial expressions. Exaggerated values permit the definition of 
actions that are normally not possible for humans, but could be desirable for cartoon-like characters.  

All low-level FAPs are expressed in terms of the Facial Animation Parameter Units (FAPUs), as 
ill ustrated in Figure 3. These units are defined in order to allow interpretation of the FAPs on any 
facial model in a consistent way, producing reasonable results in terms of expression and speech 
pronunciation. They correspond to distances between key facial features and are defined in terms of 
distances between the MPEG-4 facial Feature Points (FPs, see Figure 4). For each FAP it is defined 
on which FP it acts, in which direction it moves, and which FAPU is used as the unit for its 
movement. For example, FAP no. 3, open_jaw, moves the Feature Point 2.1 (bottom of the chin) 
downwards and is expressed in MNS (mouth-nose separation) units. The MNS unit is defined as the 
distance between the nose and the mouth (see Figure 3) divided by 1024. Therefore, in this example, 
a value of 512 for the FAP no. 3 means that the bottom of the chin moves down by half of the 
mouth-nose separation. The division by 1024 is introduced in order to have the units sufficiently 
small that FAPs can be represented in integer numbers. 

The specification includes two high-level FAPs: expression and viseme. Expression can 
contain two out of a predefined list of six basic expressions. Intensity values allow to blend the two 
expressions. Similarly, the Viseme parameter can contain two out of a predefined list of 14 visemes, 
and a blending factor to blend between them. 

The specification also defines the Facial Animation Tables (FATs). The FATs allow to specify, for 
each FAP (high- and low-level), the exact motion of the vertices and/or transforms in the 3D model. 
This means that the expressions, visemes and low-level FAPs are described in a way that is 
essentially equivalent to the mentioned morph-targets. Animation systems then interpolate and blend 
between the values from the FAT. 

The Facial Motion Cloning method 
Facial Motion Cloning can be schematically represented by Figure 1. The inputs to the method are 
the source and target face. The source face is available in neutral position (source face) as well as in 
a position containing some motion we want to copy (animated source face). The target face exists 
only as neutral (target face). The goal is to obtain the target face with the motion copied from the 
source face – the animated target face. 
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To reach this goal we first obtain facial motion as the difference of 3D vertex positions between the 
animated source face and the neutral source face. The facial motion is then added to the vertex 
positions of the target face, resulting in the animated target face. 

In order for this to work, the facial motion must be normalized, which insures that the scale of the 
motion is correct. In the normalized facial space, we compute facial motion by subtracting vertex 
positions of the animated and the neutral face. To map the facial motion correctly from one face to 
another, the faces need to be aligned with respect to the facial features. This is done in the alignment 
space. Once the faces have been aligned, we use interpolation to obtain facial motion vectors for 
vertices of the target face. The obtained facial motion vectors are applied by adding them to vertex 
positions, which is possible because we are working in the normalized facial space. Finally, the 
target face is denormalized. The whole process is described in the next five subsections. 
 

( - ) + = 
Animated Source 
Face 

Source 
Face 

Target 
Face 

Animated Target 
Face 

 
Figure 1: Overview of Facial Motion Cloning 

When applying mathematical algorithms to real world problems, we often have to treat exceptions. 
With the human face this seems to be the case even more than usual. In the last three subsections of 
this section we deal with the aliasing problem when mapping between meshes of different densities, 
and with the parts of the face that can not be fully treated by the basic algorithm: the lip region, 
eyes, teeth and tongue. 

Interpolation from 2D triangle mesh 

As it will be shown further, two steps of our method, alignment and motion vector mapping, can be 
reduced to the problem of interpolating function values from a number of points in a 2D triangular 
mesh with known function values. We therefore begin by explaining how this interpolation method 
works. 

As illustrated in Figure 2, the inputs to the method are: 

• N input points Pi(xi,yi) in 2D space. 

• N function values at input points Fi = f(Pi); note that Fi can be vectors. 

• Triangulation of input points defined as M triangles Tj(aj,bj,cj), 1 < aj,bj,cj < N, aj,bj,cj defining 
the vertices of triangles as pointers into the array of input points. 

From these inputs, we want to interpolate the value of the function f(P) for any point P(x,y) in the 
2D space. 

We first determine if P is within any of the triangles Tj. To do this, we test each triangle first with a 
simple bounding box test, then by computing barycentric coordinates [Watson92] of the point P with 
respect to the triangle Tj. If Pk(xk,yk), are the coordinates of the vertices of the triangle, barycentric 
coordinates bk are computed by solving the following system of equations: 
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Because of the properties of barycentric coordinates, if 0 < bk < 1, P is inside Tj. If this is the case, 
as for point PA in Figure 2, we can compute the interpolated value as follows: 
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If point P is lying within more than one triangle Tj, this means that the triangles are overlapping. In 
this case the interpolation method needs some application-specific way of resolving the conflict and 
choosing one of the triangles. The function value is then interpolated from the chosen triangle using 
(2). 
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Figure 2: Interpolation from 2D triangle mesh 

Finally, if P is lying outside all triangles, like point PB in Figure 2, we use the interpolation value 
from the closest point on the closest triangle to P. As the measure of distance from P to a triangle, 
we use the sum of the excess barycentric coordinates, i.e. any amount of bk above 1 or below 0. In 
pseudo code, it looks like this: 

distance = 0 
for k = 1..3 
 if(bk<0) than distance += (-bk) 
 if(bk > 1) than distance += (bk-1) 
end for 

After identifying the triangle T with the minimum distance, we find the barycentric coordinates b’ k 
of the point P’ , which is the closest point to P on the triangle T. This is done by truncating each bk to 
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values between 0 and 1, then dividing them by their sum to make sure that the sum of the new 
coordinates equals 1. In pseudo code it looks like this. 

sum = 0 
for k = 1..3 
 if(bk < 0) than bk = 0 
 if(bk > 1) than bk = 1 
 sum += bk 
end for 
for k = 1..3 
 b’k = bk / sum 
end for 

Finally we apply (2) to b’ k and obtain the interpolated value. 

Normalizing the face 

The goal of normalization is to transform a face into a new 3D space, the normalized facial space, in 
which all faces have the same key proportions. This means that in the normalized space, all faces 
have the same mouth width, same distance between the eyes etc. The nice consequence of this is that 
the magnitude of motion in the normalized space is the same for different faces and we can therefore 
apply motion from one face to another by simple addition. Figure 5B shows examples of normalized 
faces. 

MW0
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ENS0

ES0 IRISD0

 
Figure 3: Facial Animation Parameter Units 
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Figure 4: Facial Feature Points (FP) 

To define the proportions of the face we use the Facial Animation Parameter Units (FAPU, Figure 
3), as specified in the MPEG-4 standard, and the MPEG-4 Feature Points (FP, Figure 4). Our 
method requires that the coordinates of key FPs be known for both source and target face. The 
required FPs are indicated in Figure 7. The regions of the face are determined from the proximity to 
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the FPs. The appropriate FAPUs are then used as normalization factors for each vertex. This 
amounts to scaling the face model with a regionally changing scaling factor. As the center of scaling 
we chose the center of the face. The normalization process can thus be represented as follows: 

for each vertex V 
 find closest Feature Point FP 
 V = (V – C) / N(FP)   // this is a component-wise division 
end for 

C is the center of the face. N(FP) is a vector containing the appropriate normalization factors for the 
region of the feature point FP. For example, the lip region is normalized with factors {MW, MNS, 
MNS} (see Figure 3). The normalization factors are FAPUs chosen to obtain MPEG-4 compatible 
facial motion in the normalized space. The MPEG-4 FAPs are normalized with respect to FAPUs. 
By normalizing with the same FAPUs we make sure that the motion of the feature points in the 
normalized space corresponds to the MPEG-4 FAPs. At the same time, by normalizing whole 
regions, we insure consistent mapping of the general facial motion. 

The process of denormalization is the simple inverse: we scale vertex coordinates by the inverse 
normalization factors.  

Computing facial motion 

The facial motion is defined as the difference in vertex positions between the animated and neutral 
face. It is expressed by an array of facial motion vectors, each vector corresponding to one vertex of 
the face. The facial motion is always computed in the normalized facial space, thus the facial motion 
vectors are correctly normalized and can be transferred from one face to another. To compute the 
facial motion vectors we simply subtract the 3D position of each vertex in the neutral face from the 
position of the corresponding vertex in the animated face. 

Aligning source and target face 

When transferring facial motion from source to target face, we need to transfer the motion to the 
corresponding facial region. This means that the motion of the left lip corner in the source face has 
to be mapped to the left lip corner in the target face; the vertices near this lip corner also have to get 
the motion from vertices in the corresponding region of the source face. In order to achieve this, we 
compute the motion mappings using the alignment space. This is a 2D space in which the source 
and target face are aligned with respect to the feature points. So, in the previous example, the left lip 
corners of the source and target face are in the same point in the alignment space. We can therefore 
use the alignment space to map the facial motion from source to target, as will be explained in detail 
in the next subsection. 

Figure 5 shows the process of projecting source and target face into the 2D space. The initial faces 
are shown in Figure 5A. After normalization, as explained in the previous subsection, we obtain the 
normalized faces in Figure 5B.  

The normalized faces are then mapped into 2D space using cylindrical projection around Y-axis. 
The center of projection is computed in such a way that the angular width of the mouth remains 
constant. The zero angle is always aligned with the tip of the nose. These two rules, together with 
previous normalization, ensure that the projected faces, shown in Figure 5C, are already roughly 
aligned. 
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                A                                        B                                                              C      

Figure 5: Aligning source and target face. Upper row: source face. Lower row: target face. A: faces in initial 
state. B: normalized faces. C: faces projected into 2D. Facial features are outlined for better visibili ty. 

 

 
                                       A                                                                                B     
Figure 6: Aligned source and target faces; source face shown with ‘x’ , Feature Points marked with ‘ *’ ; target 

face shown with ‘+’ , Feature Points marked with a circle. Facial features are outlined for visibili ty. 

In the final alignment, we move the feature points of the target face onto the corresponding feature 
points of the source face. The non-feature points are pulled by the feature points so that facial 
regions remain intact. Figure 6A shows the source and target face aligned, and Figure 6B shows a 
zoom-in detail of the same. 
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The pulling of non-feature points into their regional position is achieved by the previously described 
triangle mesh interpolation method. The input points for interpolation are the feature points. The 
interpolated function is the movement vector of the feature point obtained by subtracting its original 
position from its new position (i.e. the position of the feature point in the source face). The 
triangulation, necessary for the interpolation algorithm, is produced manually, as illustrated in 
Figure 7. We have also experimented with Delauney triangulation. However, the manual 
triangulation gave us flexibility to experiment with different triangulations and choose the optimal 
one. As this is done only once, and is fairly simple, there is no advantage in using automatic 
triangulation. 
 

 
Figure 7: Triangulation of the feature points used for interpolation of non-feature-points movements for 

alignment. This figure also illustrates which Feature Points are required for the Facial Motion Cloning. In 
addition to the ones illustrated in the figure, Feature points 7.2 (neck base), 3.5 and 3.6 (left and right iris 

centers) are also required. 

Mapping facial motion 

We know the facial motion vector for each vertex of the source face, and we have mapped these 
vertices into the 2D alignment space. To obtain the motion vectors for vertices of the target face, we 
again use the previously described triangle mesh interpolation method. The input points are all 
points of the source face. The input function values are the motion vectors at input points. The 
triangulation is directly available from the source face model. As this triangulation is defined in 3D, 
there is a high possibility of overlapping triangles in 2D. To resolve this conflict we choose the 
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triangle with the smallest depth at the interpolation point. The depth at the interpolation point is 
obtained by interpolating depth of the three vertices of the triangle. 

Once we have the facial motion vectors for each vertex of the target face, we simply add them to the 
vertex positions and denormalize the target face. This is the animated target face. 

Antialiasing 

In our interpolation method, the values of the motion vector are known at the points of the source 
face mesh. This is equivalent to sampling a (presumably smooth) function at a number of discrete, 
non-evenly distributed points. The density of the source face mesh is the equivalent of the sampling 
frequency, which usually changes for different regions of the face. From these values, we interpolate 
– or, in effect, re-sample - the value of the function at a different set of non-evenly distributed 
points, those of the target face. Again, the density of the target face mesh is equivalent to the 
frequency after re-sampling. A difference in these two sampling frequencies, i.e. in mesh densities, 
leads to an aliasing problem manifesting itself in irregularities in the target face motion when 
mapping from a face with a higher density to a face with a lower density (see Figure 8).  

To solve this problem, instead of interpolating the value only at the exact point, we also interpolate 
at additional points around the original point, then average the result. In effect, we apply a low-pass 
filter to the interpolation function. The size of the support area of the filter can be varied, but we 
experimentally found the value of 0.02 to be satisfactory for all cases we tried (the dimensions of the 
face in the 2D alignment space are limited by the normalization and 2D projection process and 
therefore similar for all faces, which explains why there is no drastical change in required support 
area size for the filter). 

  
                                         A                                                          B 

Figure 8: A: Aliasing artifacts clearly visible on lower lip. B: When fil tering is applied, lower lip is smooth. 

Treating the lip region 

The lip region poses a particular problem for facial motion mapping because the points in the upper 
and lower lip are very close in the alignment space, but their motion is typically opposite. If we 
apply the above-described mapping algorithm, the motion of the lower lip would pull the upper lip 
as well, and vice versa, producing severe artifacts. 

We therefore classify all vertices in the face into one of the three categories: upper lip region, lower 
lip region and out of lip region. When we calculate the motion vector for target face vertices 
belonging to the lower lip region, we ignore the vertices of the upper lip region of the source face, 
and vice versa. 
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To determine the lip regions we use the upper and lower lip feature points, as well as the feature 
points of the nose and the chin. We define the regions in the projected 2D space (Figure 5C). The 
upper lip region is determined as the polygon defined by the feature points of the inner upper lip 
contour and the sides of the nose. The lower lip region is determined as the polygon defined by the 
feature points of the inner lower lip contour and the sides of the chin, as illustrated in Figure 9. 

Treating eyes, teeth, tongue and global motion 

Eyes, teeth and tongue are typically modeled as separate polygon meshes in a face model, and 
inserted into the scene hierarchy tree under separate transform nodes. In particular, the MPEG-4 
Facial Animation Tables allow for specification of the motion of  transform nodes. We therefore 
attempt to automatically identify the transform nodes responsible for the motion of eyes, teeth, 
tongue and the global motion, then map these motions onto appropriate transform nodes in the target 
face. 

 

 
Figure 9: Upper / lower lip region distinction. Upper lip region points marked with circles, lower lip region 

points marked with squares. Facial features are outlined for better visibility. 

The strategy for finding the appropriate transform nodes is to look for the hierarchically lowest 
transform node that contains some motion, and encompasses the polygon meshes we look for (i.e. an 
eye, tongue, lower teeth or movable part of the face). The polygon meshes are identified from 
feature points. For example, to identify the meshes containing lower teeth, we look for a mesh in the 
model containing one of the lower teeth feature points. Then we look for any connected meshes in 
case teeth are composed of more than one mesh. While looking for connected meshes, we avoid 
those that can be identified as other parts of the face, e.g. if the face is modeled with clenched teeth, 
the upper and lower teeth meshes may appear connected but we resolve this problem by identifying 
upper teeth as well from their feature points. 
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In the target face, we find the appropriate transform as the hierarchically lowest transform node that 
encompasses the polygon meshes we look for. In case of eyes and global transform, we also make 
sure that their centers of rotation are appropriate (centers of eyes and base of the neck, respectively). 
If they are not, we install new centers of rotation. 

When these correspondences are established, we map rotations of eyes and global motion, and 
translations of teeth and tongue, from source to target. If any of the transforms in source or target 
face cannot be identified, these motions are ignored and a warning is issued. 

A proper way to treat the tongue would obviously require it to be flexible. The main Facial Motion 
Cloning algorithm could be applied separately to the tongue. However, at the current stage we had 
no access to source facial models that actually animate the tongue as a flexible object and we limited 
the method to rigid object motion for the tongue. 
 

     
YODA LAKE DATA DEMY CANDIDE 

 
Figure 10: The face models used for testing, shown in neutral position. The sources of the models are: 
Linköping University for Candide, Sasa Galic for Demy, 3DS Max Tutorial for Lake, Avatara VR 

(www.avatara.com) for Data and Yoda. 

Results 
In the testing of the method we have used five face models shown in Figure 10: Candide, Demy, 
Data, Lake and Yoda. Data and Yoda were available only in neutral positions. Candide was 
available with a full range of low-level FAP motions obtained algorithmically [Ahlberg01], but 
high-level FAPs were not available. The Lake model was available with visemes, but no other 
motion. Finally, Demy was available with a full set of high- and low-level FAPs. The missing 
motions for each model were created first by cloning from either Demy or Candide. Thus a full set 
of high- and low-level FAP motions was available for each model. Then all motions were cloned 
from each model to each other model, producing a full grid of cloned animated models for each 
motion. One such grid is shown for the surprise expression in Figure 11, and another for the viseme 
I in Figure 12. In these grids, the main diagonal contains the source faces, and the rest of each row 
shows the results of cloning from that source face to all other face models. Therefore, looking at 
each row shows how an expression is cloned from one face to all other faces; looking at each 
column shows how the expression is cloned onto the same face from different sources. 

It is also interesting to show the expressions produced by combinations of cloned low-level FAPs. 
One such expression is shown in the cloning grid in Figure 13. These expressions are not cloned 
directly. Rather, all low-level FAP motions were cloned, and then the face was moved into an 
expression determined by a particular combination of FAPs. The diagonal contains the source face 
showing the same combination of low level FAPs. 
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Figure 11: Cloning grid for surprise expression. 
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Figure 12: Cloning grid for the viseme I. 
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Figure 13: Cloning grid for an expression produced by low-level FAPs. The FAPs were set to the following 

values: open jaw: 800; stretch left and right lip corners: 150; all i nner and outer, upper and lower lip 
raising/lowering FAPs: –400; raise left eyebrow (middle, inner and outer): 300. 

Discussion 
In terms of visual results shown, even though only a small subset of them could be presented here, 
we believe that most facial movements for expressions and low-level FAPs are copied correctly to 
the target faces in most cases. Certain problems still appear, in particular when using low level 
FAPs, as it is visible in Figure 13. This is due to the process of combining low level FAPs to form 
expressions. If the low level FAPs are not very carefully designed, their combination leads to 
irregularities in the combined expressions. Such irregularities, if existing in the source face, are 
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carried over to the cloned face. If the cloned face is then itself used a a source, the irregularities 
propagate to the next cloned generation and possibly amplify. This is clearly visible in Figure 13, 
where the original Demy model already shows severe visual artifacts when animated by low level 
FAPs (see original Demy in the second row). These artifacts are visible in all cloned models in the 
second row. Furthermore, the Data and Yoda models cloned from Demy were in turn used as 
sources, and thus the artifacts propagate to all cloned models in rows 3 and 5 as well. By contrast, 
models cloned from Candide (row 1), and subsequently from Lake cloned from Candide (row 4), 
show much less artifacts or none at all, because the candide model originally has much better 
definitions of low level FAPs then Demy. 

We have also noted during the experiments that the method is quite sensitive to correct placement of 
Feature Points, which was expected. 

It is interesting to compare with other similar methods, and the obvious choice in this case is the 
recent Expression Cloning proposed in [Noh01]. The final results are not easy to compare due to 
different facial models and expressions used in tests, so we leave the subjective judgement to the 
readers. We can discuss differences in approach and implementation which are substantial, although 
the basic idea is very similar. We could summarize the differences of Facial Motion Cloning (FMC) 
with respect to Expression Cloning (EC) in the following points: 

• FMC is specifically aimed at preserving MPEG-4 compatibili ty of motion. 

• FMC treats the motion of the eyes, teeth and tongue. 

• FMC treats the aliasing problem due to differing densities of source and target meshes. 

• EC uses Radial Basis Functions for alignment of surfaces in 3D; FMC aligns points in 2D and 
uses a simple interpolation – we suspect that FMC is simpler to implement and lighter in CPU 
usage; we can currently not conclude if this has a substatnial adverse impact on quality. 

• EC scales the motion vectors locally and adjusts their direction; FMC scales with respect to 
MPEG-4 FAPU normalization, i.e. on a larger scale, and it does not adjust motion vector 
direction as it would destroy the MPEG-4 compatibili ty – this might have an adverse effect on 
quality. 

• EC proposes heuristic rules to identify the correspondence points between two faces; FMC could 
possibly use some of these rules, but as it needs exact MPEG-4 Feature Points probably at least 
some points would still need to be manually defined (in the current implementation the points are 
identified manually) 

In summary, we believe that FMC and EC share the same underlying idea, however with numerous 
differences in goals and implementations due largely to the MPEG-4 compatibili ty of FMC. 

As a final conclusion, we believe that Facial Motion Cloning offers a dramatic time-saving potential 
for producing facial animation based on morph targets or MPEG-4 Facial Animation Tables. 

Acknowledgments 
This research is supported by the VISIT programme of the Swedish Foundation for Strategic 
Research (SSF). The Demy face model and its animation were created by Sasa Galic. Many thanks 
to Robert Forchheimer who sparked this idea during a brainstorming. 



Submitted to Graphical Models journal, 18.09.2001. 

17 

References 
[Ahlberg01] “Candide-3 -- an updated parameterized face”, J. Ahlberg, Report No. LiTH-ISY-R-
2326, Dept. of Electrical Engineering, Linköping University, Sweden, 2001. 
www.icg.isy.liu.se/candide 
[Arai96] “Bili near interpolation for facial expressions and methamrphosis in real-time animation” , 
Kiyoshi Arai, Tsuneya Kurihara, Ken-ichi Anjyo, The Visual Computer, 12:105-116, 1996. 
[Chadvick89] “Layered construction for deformable animated characters” , Computer Graphics, 
23(3):234-243,1989 
[Escher98] “Facial Deformations for MPEG-4”, M. Escher, I.S. Pandzic, N. Magnenat-Thalmann, 
Computer Animation 98, Philadelphia, USA, pp. 138-145, IEEE Computer Society Press, 1998.  
[ISO14496] ISO/IEC 14496 - MPEG-4 International Standard, Moving Picture Experts Group, 
www.cselt.it/mpeg 
[Kalra92] Kalra P., Mangili A., Magnenat-Thalmann N., Thalmann D., “Simulation of Facial 
Muscle Actions based on Rational Free Form Deformation” , Proceedings Eurographics 92, pp. 65-
69 
[Lavagetto99] “The Facial Animation Engine: Toward a High-Level Interface for the Design of 
MPEG-4 Compliant Animated Faces” , Fabio Lavagetto, Roberto Pockaj, IEEE Transactions on 
circuits and systems for video technology, 9(2):277-289, 1999. 
[Magnenat-Thalmann88] “Abstract muscle actions procedures for human face animation” , N. 
Magnenat-Thalmann, N.E. Primeau, D. Thalmann, Visual Computer, 3(5):290-297, 1988. 
[Noh01] “Expression Cloning” , Jun-yong Noh, Ulrich Neumann, Proceedings of SIGGRAPH 2001, 
Los Angeles, USA 
[Pandzic01] ”A Web-Based MPEG-4 Facial Animation System”, I.S. Pandzic, Proc. ICAV 3D 
2001, demonstration at www.icg.isy.liu.se/~igor/MpegWeb 
[Parke74] “A Parametric Model for Human Faces” , F.I. parke, PhD Thesis, University of Utah, Salt 
Lake City, USA, 1974. UTEC-CSc-75-047 
[Parke96] “Computer Facial Animation” , F.I. Parke, K. Waters, A K Peters Ltd. 1996., ISBN 1-
56881-014-8 
[Platt81] “Animating Facial Expressions” , S.M. Platt, N.I. BadlerComputer Graphics, 15(3):245-
252, 1981. 
[Tekalp00] “Face and 2-D Mesh Animation in MPEG-4”, Tekalp M.A., Ostermann J., Image 
Communication Journal, Tutorial Issue on MPEG-4 Standard, Elsevier, 2000. 
[Terzopoulos90] “physically-based facial modeling, analysis and animation” , D. Terzopoulos, K. 
Waters, Journal of Visualization and Computer Animation, 1(4):73-80, 1990. 
[VRML] VRML, ISO/IEC 14772-1:1999, www.web3d.org/fs_specifications.htm 
[Waters87] “A muscle model for animating three-dimensional facial expressions” , K. Waters, 
Computer Graphics (SIGGRAPH’87), 21(4):17-24, 1987. 
[Watson92] Watson D.F., “Contouring – A Guide to the Analysis and Display of Spatial Data”, 
Computer Methods in Geosciences, Volume 10, Pergamon 


