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Abstract

In this paper we study the effects of simultaneous homogenization and dimension reduction
in the context of convergence of stationary points for thin nonhomogeneous rods under the
assumption of the von Karmén scaling. Assuming stationarity conditions for a sequence of
deformations close to a rigid body motion, we prove that the corresponding sequences of
scaled displacements and twist functions converge to a limit point, which is the stationary
point of the homogenized von Karman rod model. The analogous result holds true for the
von Karmén plate model.
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1. Introduction

Boosted by the rigidity result of Friesecke, James and Miller [I4], the rigorous deriva-
tion of various approximate models from three-dimensional nonlinear elasticity theory and its
variational justification have become a prominent research topic in the last decade. In partic-
ular, based on a refined rigidity result [I5], a whole hierarchy of limiting lower-domensional
models has been derived by means of I'-convergence techniques [4, [10]. In this paper, we
only refer to the derivation of nonlinear inextensible rod models [23] 25]. In all these models
however, the material is assumed to be fixed, i.e. does not have a microstructure. There is
also a vast literature on studying the effects of simultaneous homogenization and dimension
reduction in various contexts [5], 9, [19], but we will focus on the derivation of rod models. In
[21] the authors studied a linearized rod model assuming its homogeneity along the central
line and nonhomogeneous microstructure in the cross section. A systematic approach com-
bining rigidity estimates [I5] and the two-scale convergence method [1] was presented in [2§]
for the model of bending rod under the assumption of periodic microstructure. The same
homogenized model has been obtained in [22] without periodicity assumptions, while using a
I'-convergence method tailored to dimension reduction in higher-order elasticity models. This
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method has been previously applied for the derivation of homogenized von Karman plate [32]
and linearized elasticity models [§], and in this paper we briefly outline how it accomplishes
the homogenized von Kérmédn rod model (see Section [2.5)).

The main purpose of this paper is to study convergence of stationary points of thin three-
dimensional inhomogeneous rods in the von Karman scaling regime. The above mentioned
I’-convergence techniques roughly assert that a compact sequence of minimizers of scaled
energies converges (on a subsequence) to a minimizer of the limit energy. However, due to
nonlinearities, these minimizers are typically only global and do not necessary satisfy the
corresponding Euler-Lagrange equation. Secondly, it is possible that there exist stationary
points that are not minimizers and thus their convergence can not be analyzed by the I'-
convergence approach. Convergence of stationary points of thin elastic rods in the bending
regime has been first studied in [26] on a simplified model of thin 2D strips and thenafter
extended to the full 3D problem in [24]. In order to identify the limit equations, besides
the rigidity estimate, the authors also used compensated compactness and careful truncation
arguments. Later on, convergence of stationary points of thin elastic rods in higher-order
scaling regimes (including the von Kérmén scaling), under physical growth conditions for the
elastic energy density, has been established in [I1]. However, in all these models the rod
material was assumed to be fixed, i.e. without a microstructure.

In this paper we allow for possibility of materials with a microstructure (including random)
and study the effects of simultaneous homogenization and dimension reduction in the context
of convergence of stationary points in the von Karman rod model. Let us denote by 2 =
(0,L) x w C R3 a three-dimensional rod-like canonical domain of length L > 0 and cross-
section w C R? bounded, having a Lipschitz boundary. The (scaled) energy functional of a rod
of thickness h > 0 occupying material domain Q5 = (0, L) x hw associated to a deformation
y" : Q@ — R? is defined on the canonical domain by

Eh(yh):/QWh(x,Vhyh)dx—/th~yhdx. (1)

Above W' is an elastic energy density describing an admissible composite material (see Sec-
tion , Viy" = (019" | %Ebyh | %&:,yh) denotes the scaled gradient of the deformation, and
f" describes an external load. It is well known that different scaling regimes with respect to
the thickness h in the applied load and elastic energy lead in the limit to different rod models
[15, B1]. In the von Kdrmdn scaling of the rod, which is the subject of the research here, we
assume that the elastic energy of a sequence (y") satisfies

. 1
lim sup h4/ Wh(z, Vyy")dae < co. (2)
hl0 Q

The forcing term scales as f* = h3f, where f = foea + f3ez with fo, f3 € L?(0, L), meaning
that only normal loads to the mid-fiber of the rod are considered. One can prove that under
this scaling of the forces the global minimizers satisfy the assumption (2)), see [15] for details.

Under assumption on a sequence of deformations (y”) one can also prove, based on the
theorem of geometric rigidity [14], that there exist sequences of rotations (R") ¢ SO(3) and
constants (") C R3, such that transformed deformations §"* = (R")Ty" — ¢ converge to the
identity deformation on (0,L) in the L?-norm, i.e. §® — wz1e;, and moreover, V;g" — I in
the L2norm [23] (cf. Theorem [2.1| below), where I is the 3 x 3 identity matrix. Furthermore,



the scaled displacements, defined by

h @{l L h Qf ' .
u'(x1) = 2 da’, v (z1) = de fori =2,3, (3)
w w
and the twist functions
w /$2y3 x3y2d / (4)
w
where p(w) = f z3 + x3)da’, converge (Weakly) on a suitably extracted subsequence to

(u, vo,v3, w ) € H1(0 L) x H?(0,L) x H?(0,L) x H*(0,L) (see Theorem.for more details).
If one assumes the natural fixed boundary condition at one end of the rod, then it can be
shown that R" can be taken to be identity and c¢" can be taken to be zero (see Remark
below).

The strain sequence (G") is implicitly defined through the decomposition of the scaled
gradient as V9" = R"(I + h?G"), where (R") denotes the sequence of rotation functions
constructed in Theorem Convergence results from Theorems and allow for the
representation of the symmetrized strain sym G” as the sum of a fixed and a corrector (and
remainder) term as follows:

sym G" = sym(1(myg)) + sym V9" 40", (5)

~
fixed term corrector term

where the fixed term is

u 4 3 (vh)2 + (v5)?) — vhwg — vl
my = —w'zs : (6)
w'xy

with » denoting the inclusion of vectors into 3 x 3 matrices, the sequence (¢"), called the cor-
rector sequence, satisfies (Y%, b hypl) — 0, fw(xgwg — z3¢8)da’ — 0 in the L?-norm and
| sym V2" || r2@) < C, while the rest sequence (o) converges to zero in the L?-norm. The
corrector term plays the role of the corrector in homogenization. Utilizing the I'-convergence
method developed for the bending rod model in [22], we can analogously perform the simul-
taneous homogenization and dimension reduction process in the von Kédrman case and obtain
that the corresponding homogenized model, i.e. the T-limit of h=4E"(¢") as h | 0, is given by

L
E%(u,va,v3,w) = Ky (ma) — / (fava + fzvs)dwy,
0

where the functions u, v, v3 and w are the weak limits of the scaled displacements and the
twist functions, respectively, and mgy is given by @ Moreover, the resulting limit elastic
energy density (depending on a given subsequence of the diminishing thickness (h)) can be
calculated according to

Kny(ma) = 1}518/ Q" (z,1(mq) + sym V)t )da (7)

where Q" is the quadratic form approximating the energy density W", and (!, d) the sequence
(which we call the relaxation sequence) that satisfies certain minimality property (see ,
below). Confer Section for more details.



As we already stressed out, our aim is to study the stationary points of the energy func-
tional £ rather than just global minimizers attainable through the I'-convergence techniques.
The weak form of the Euler-Lagrange equation of the functional £”, assuming the zero bound-
ary condition on the zero cross-section {0} x w, formally reads:

/Q (DWh(ﬂ% Vay") : Vg — h3(fada + f3¢3)> dz =0, (8)

for all test functions ¢ € HL(Q,R3) = {¢ € HY(Q) : Pl{oyxw = 0}. This notion of station-
arity is the standard one, but possibly not best suited for the nonlinear elasticity. Namely, it
is still an open question whether under physical growth assumptions on the energy densities
W, global or suitably defined local minimizers of £" satisfy the Euler-Lagrange equation [3].
In this paper we additionally require linear growth and continuity of the stress (cf. hypothesis
H5 below). This is also done in [24] 26]. There is an alternative notion of first-order sta-
tionarity in elasticity, proposed by Ball in [3], and that concept is compatible with a physical
growth condition which roughly says that the energy blows up if the deformation degener-
ates. While the authors in [II] managed to deal with the alternative stationarity condition
and to systematically derive the corresponding stationarity conditions for the limit models,
our method is not compatible with that mainly because of the possibility of interpenetration
of the matter and we remain in the previously discussed setting.

Now we are in position to state the main result of the paper.

Theorem 1.1. Let the sequence (W") describe an admissible composite material (see (C1),
(C2), (C3) below) and let (y") C HL(L,R3) be a sequence satisfying (@ Then the sequence
of deformations and sequences of scaled displacements (we take §" = y") converge (on a
subsequence) as follows:

y" — zieqstrongly in HY(Q,R?)

ul — u weakly in HL(0,L),

vl — w; strongly in H(0,L), and v; € H3(0,L) fori=2,3,
w — w weakly in H}(0,L).

Let ' = h3(faea + fses) with fa, f3 € L2(0, L) be an external load and assume that (y") are
stationary points of the energy functional E", i.e. solve equation (@, then (u, vy, vs,w) is a
stationary point of the limit energy functional £°.

Big part of the proof of Theorem (compactness) does not differ much from the case of
materials without a microstructure, which is already available in the literature. These results
are comprised and properly referenced in Theorems and below in Section [2l Hence,
the main focus here is the statement that stationarity of the sequence of deformations y” of
the energy functional £ (in the sense of ) implies the stationarity of the point (u, ve, v3, w)
for the limit energy functional £°. The key in proving that statement are the orthogonality
properties provided in Lemma [2.5|and Lemma [3.1] respectively, which essentially allows us to
identify two sequences: the relaxation sequence (") from @ and the sequence of correctors
(") from () up to L%-concentrations, which are irrelevant for identification of weak limits.
Namely, Lemma tells us that the orthogonality property is automatically satisfied by the
relaxation sequence (¢",), while Lemmaproves this property for the sequence of correctors
(4) by using the equations. The proof of Lemma together with the proof of Theorem



and identification of limit Euler-Lagrange equations are the subject of Section |3, while
some technical results can be found in the Appendix. We emphasize at this point that, up to
some technical peculiarities, the same approach can be utilized for studying the convergence
of stationary points of the von Karméan plate model, and the analogous result holds true.

Finally, in Section [4 we consider materials with random microstructure satisfying the
von Karmaén scaling and provide an explicit cell formula for the limit energy density of the
functional Kz (cf. Proposition. This result also covers the case of materials with periodic
and almost periodic microstructure.

2. Preliminaries

2.1. Notation

The set Q = (0, L) x w C R3 is a Lipschitz domain describing the canonical configuration
of a rod of length L > 0 and shape w C R?. Vectors ey, e, e3 denote the canonical basis
of R? and (71,2') € R, with 2/ = (29,23) € R?, denote the coordinates of a point in R?
with respect to that basis. Also, we will frequently use the projection of a point z € R3
to x’-plane, denoted by p,/(z) = (0,2')T. For a given thickness h > 0, the scaled gradient
is denoted by V, = (04, %02, %63). The space of real 3 x 3 matrices is denoted by R3*3,
while Rg;rﬁ, Rglfvs’ and SO(3) denote the subspaces of symmetric, skew-symmetric, and special
orthogonal matrices, respectively. For a skew-symmetric matrix A we denote its axial vector
by axl A = (Ass, A13, A21). By ¢ : R? — R3*3 we denote the inclusion +(v) = v®e;. Depending
on the context, by |- | we denote both the Lebesgue measure of a set and the euclidean norm
of a vector in R%. The space of smooth functions on [0, L] which are vanishing at zero will be
denoted by C§°([0, L]), while the space of smooth functions on € with compact support will
be denoted by C2°(f2). Given two functions ¢, € L'(Q,R3), we define the twist function
€6,v) : (0,L) = R by

t(p,¥)(71) = /(:Ezw — x3¢)dz’.

Finally, the moments of a function ¥ € L'(£2,R3*3) are denoted as follows. The zeroth
moment W : (0, L) — R3*3 is defined by

wm—/wmmx (9)

and first-order moments U, ¥ : (0, L) — R3*3 are defined by

~ ~

\Il(xl)—/xglll(x)dx', \Il(xl)—/xg\ll(x)dx'. (10)

2.2. won Kdrmadn rod model — supplement

Let w C R? be a Lipschitz domain with Lebesgue measure |w| = 1 and assume that
coordinate axes are chosen such that

/a:gda;’—/xgdx’—/xgxgdx'—O.

By Q" = (0, L) x hw we denote the material domain of a rod-like body of thickness h > 0
and length L > 0. Performing the standard change of variables €, > Z — x € €, given



by x1 = &1, 2/ = %:i"’, we will in the sequel work on the canonical domain Q = (0, L) x w.
For every h > 0, the (scaled) energy functional of a deformation 3" : Q — R3 is given by

expression .

For the elastic energy densities W/ we have more or less standard hypotheses for nonlinear
composite material, which are listed in the sequel.
Nonlinear material law. Let o, 8, o and k be positive constants such that o < 8. The class
W(a, 3, 0, k) consists of all measurable functions W : R3*3 — [0, 4-00] satisfying:

(H1) frame indifference: W (RF) = W (F) for all F € R3*3 and R € SO(3);
(H2) non-degeneracy:

W(F) > adist?(F,SO(3)) for all F € R3*3,

W(F) < Bdist*(F,SO(3)) for all F € R**3 with dist?(F,SO(3)) < o;
(H3) minimality at identity: W (I) = 0;

(H4) quadratic expansion at identity: W (I + G) = Q(G) + o(|G|?) as G — 0 (G € R3*3),
where Q : R3*3 — R is a quadratic form;

(H5) linear stress growth: |[DW (F)| < s(|F| + 1) for all F € R3*3.

Admissible composite material. For «, B, o and k positive constants as above, a family of
functions W" : Q x R3*3 — [0, +00] describes an admissible composite material of class
W(a, B, 0, k) if the following hypotheses hold:

(C1) for every h > 0, W" is almost everywhere equal to a Borel function on © x R3*3;
(C2) for every h > 0, Wh(z,-) € W(a, B, 0, k) for a.e. x € Q;

(C3) there exists a monotone function r : [0, +00) — [0, +00) such that 7(4) | 0 as 6 | 0 and

VG € R332 Vh >0 : esssup |[Wh(z, I +G) - Q"x,G)| < r(|G])|G|?, (11)
e

where Q"(x,-) are quadratic forms defined in (H4).

The given quadratic form Q"(x,-) can be (uniquely) represented by a positive semidefinite
linear operator A”(z), i.e.

Q"(x, F) = %Ah(m)F . F, forall FeR¥3 and for ae. z € Q.

Assuming that Q" corresponds to an elastic energy density W" belonging to a family of elastic
energy densities describing an admissible composite material of the class W(a, 3, g, k), one
can easily prove that Q" is a Carathéodory function which satisfies:

(a) alsym F|? < Q"(z,F) = Q"(x,sym F) < B|sym F|?, for all F' € R3*3;

(b) ]Qh(m,Fl) — Qh(x,Fg)\ < Blsym Fy — sym Fy||sym Fy + sym Fy|, for all Fy, F € R3*3.



2.8. Rigidity and compactness

Using the theorem of geometric rigidity [14], the following result has been established in
[23].

Theorem 2.1. Let (y") € H'(Q,R?) be a sequence satisfying

1
lim sup h4/ dist?(V5,y", SO(3))dz < 400 .
hl0 Q

Then there exist: a sequence of maps (R") c C*([0,L],SO(3)), a sequence of constant
rotations (R") € SO(3) and constants (c") C R® such that the sequence (§"), defined by
g = (RMTyh — ch, satisfies

IVhi" = R"|| 20y < CR2, (12)
I(R"Y|| 20,y < Ch,
IR" = I|| 20,0y < Ch.

The sequence of constants (c) in the previous theorem can be chosen such that

/(z)?—xl)d:czo, /gg’dxzo fori=2,3.
Q 9)

Next, we introduce the following ansatz for (§"):

h h
gt =1 + h? (uh - mg—Rm - J:3R31> + h2ph
h h (13)

g)zh = hx; + hvlh + thhxf- + hQﬁih, fori=2,3,

where 2+ = (0, —z3,2), and functions u", v}, v:’,f, and w" are defined in and .

Remark 2.2. Using , the Poincaré inequality, the fact that y"(0, x2, 23) = (0, hao, ha3),
and the construction from [23], it can be shown that |RM(0) — I| < Ch3/? for some C > 0.
Thus the boundary condition imply that R* can be taken to be equal to identity matriz and ¢
can be taken to be zero (i.e., we can take j" = y").

Remark 2.3. Observe that the proposed ansatz is a slight modification of the ansatz for the
same sequence (§") from [23, Theorem 2.2 (f)]. In lieu of terms (v}!)', i = 2,3, we set + Rl},
respectively. This enables us to control the full scaled gradient of the corrector sequence (")
in the L?-norm (see Theorem below), which is crucial for application of our method in
the analysis afterwards.

Theorem 2.4. Let the assumption and notation of the previous theorem be retained and let

y"(0,22,23) = (0, hzo, has). For sequences (ul), (v1), i = 2,3, and (w") defined above, we

have the following convergence results which hold on a subsequence:
u — u weakly in HL(0,L),
ol — w; strongly in H}(0,L), and v; € H3(0,L) fori=2,3,
w" — w weakly in HE(0,L).

Moreover, the sequence of corrector functions (8") satisfies the uniform bounds: ||8"||12(q) <
Ch and ”Vh,BhHL2(Q) < C.



Proof. The proof follows the lines of the proof of Theorem 2.2 from [23], but we include it
here for the reader’s convenience. From Remark we conclude that we can take " = y".
Let us define

1
A = E(Rh —1).

From the previous theorem we have || R" —1|[z2¢0,) < Ch and ||(Rh)’||L2(0,L) < Ch, which im-
plies the uniform bound || A" || m1(0,0) < C. Therefore, (up to a subsequence) Al —~ A weakly
in H'((0,L),R3*3). From the compactness of the Sobolev embedding H'((0, L), R3*3)

>((0, L), R3*3), we conclude A" — A strongly in L>((0, L), R3*3). Direct calculation re-
veals the identities

1 1
AP 4 (AT = —p AP (AT and 3 sym(Rh —I) = ﬁ(Ah + (AMTY,

which respectively imply AT = —A and

1 1
72 sym(R" — I) — §A2 strongly in L>((0, L), R3*3). (14)

Since ||[Vxy" — R 2@ < Ch?, using the triangle inequality and established convergence
results, we conclude

1
E(Vhyh —1I)— A strongly in L*(Q,R3*3). (15)
By construction we have fOL u(x1)dr; = 0. Thus, the Poincaré and Jensen inequalities

together with imply

Cp
w120,y < CpII(W") | 120.2) < ﬁ\\aly? — 20

C'P Cp
< ﬁ”ﬁly? — R |20 + ﬁHR}fl U2 < C.

Therefore, up to a subsequence u”" — u weakly in H'(0, L). Similarly, fo "(x1)dxy = 0 for
1= 2,3, and

1(0?) Il 20,1y < Loy 2 < C.

Hence, (up to a subsequence) v — v; weakly in H*(0, L). Moreover, since

h
(vl = / 31}?;1- dz’ — A;  strongly in L*(Q,R**3)

one concludes that A;; = v} for i = 2,3. Since A;; € H'(0,L), we conclude v; € H?(0, L)
for i = 2,3. Next, we consider the sequence of twist functions (w”"). Note that they can be

written as
1 h iyl — 1
wh(z1) = () /wm <y2 - 72 /wygdx'> da’

1 Rty — 2o 1
‘mw)/ﬁ”( R R d”C)d



For the above integrands we have (according to and the Poincaré inequality):

h—l h _ 1
% 2 yhda' — Agymy  strongly in L*(Q);
w
h—l h _ 1
% T2 / yhda' — —Aspws  strongly in L*(9).
w

Therefore, w"

converges strongly in the L?-norm to the function w = Asy € L?(0,L). Using
the a priori estimate || V,y" — R"|| 2 < Ch? and the normality of rotation matrix columns,
we conclude the uniform bound ||(w")|| 2o 1) < C. Hence, w" — w weakly in the H'-norm.
Observe that the limit matrix A € H'((0,L),R3*3) is completely identified by the limits

u,w € HY(0,L) and vy,ve € H?(0, L) in the following way
0 —vy —vh
A= v5 0 —w |. (16)

!
vy W 0

Finally, we consider the sequence of corrector functions (5") given by:

h h h
yi'(x) — 1 Ry, (21) R, (21)
i) = WO 2Ty g TlE1) g i),
1 (yM(z) — ha;
(o) = 5 (0 ) ot ) L i=23.

For brevity reasons, let us denote 8{1 = %81-, then for i = 2,3 we compute

1 R 1 Rl + R
ph h il _ h,h _ ph il 17

The first term on the right-hand side is bounded in the L?-norm due to [|[V4y" — R"||12(0) <

Ch?, and the second one due to . Thus, [|0;87 || 12y < Chfori = 2,3. Since [ A7 (x)da’
0, using the Poincaré inequality we conclude

187 (1, )72y < C (H@zﬁ?(mla M) + H@sﬁ?(xlw)H%m)) for a.e. 21 € (0,L).

Integrating the latter inequality along zi-direction yields the L?(£2)-bound on ﬁ{’ of order
O(h). The identity

aly{l —1
B2

Rh / Rh /
iy e ), (Y

B =

directly implies the uniform bound ||d; 37| r2(q) < C. Straightforward calculations reveal

1 ; ..
9; 8 = 7 (3Jhylh — 05 — (—=1)7(1 - 6ij)hwh) , fori,j=2,3,

where we have used 0;z; = (—1)/(1 — §;;). Furthermore,

0;8! + 0B8] 1 -
(Sym Vﬁh)w = % = E (Sym(vhyh - I)>z] ) for 1,J=2,3,



which implies the uniform bound ||(sym V")l 12(q) < Ch for i,j = 2,3. Note that for
a.e. 1 € (0, L) the function (85 (x1,-), B8(x1,-)) belongs to the closed subspace

B = {a € H' (w,R?) : / a(x')dx' = O,/(l‘gag — zoag)da’ = 0} ,
w w
on which a Korn type inequality [30] holds

18 (@1, ) gy + 181, My € S sym VB @1, )il -
4,j=2,3

Integrating the latter with respect to x1, yields the respective uniform H'(2)-bound. Hence,
we proved ||8"|| r2(q) < Ch. Finally,

st = 3 (B - oty - iyt

oyl — Ry 1
-2 (whl _ h/(alyzh — Rl)da' — h(wh)'xii> , fori,j =23,

and the previously established convergence results imply [0, 82| r2() < C. Thus, we have
proved ||V, £2( Q) < C. The boundary conditions for w”, v}, u”, v;, u follow from the bound-

ary condition for ¢, Remark . and the above convergence results. O

2.4. Strain and stress estimates

For every h > 0, using the rotation matrix function R", the strain tensor G" is implicitly
defined through the following decomposition of the scaled deformation gradient

Viy" = RMI +h*G").

The explicit identity G" = h=2(R")T(V,y" — R") directly implies with the L2-uniform
bound on the sequence (G"). Hence, there exists G € L?(£2, R3*3) such that G — G on a
subsequence. Our aim is to describe the symmetrized strain sym G" in more detail. First, we
explicitly involve the limit functions u,w € H'(0,L) and v1,v2 € H?(0,L) into our ansatz
(13)) in the following way:

h
oz
%1 e :u—xgvé—xgvg—i-w?,
~ has .
Y 3 xl_%erszrzpﬁ, for1=2,3,
where
R Rl
¢{‘:uh—u—x2<i—vé>—:pg(ﬁ—vé)—i-ﬁfa
h h
1
o= Lt —o) + @ —wpet £, fori=2a

10



Previously established convergence results imply that (%, hep%, hl/)él) — 0 strongly in the
L?-norm. Moreover, the derivatives are given by

(Rh,) (R’
ot = (uh) — ' =y (V2 — o) — g (L — o) + 018,
v, Rl ,
Aol =L Gr OBt forj=2.3,
ahwh_(;l)j(l_&.)(wh_w)_kahﬁh fori,7=2,3
Vi =g ij il A
1
ovf = () =) + (" —w) ot +ousl, fori=2.3,

which together with known convergence results immediately gives || sym V2" || ) < C.
Invoking , we obtain the following representation:

1
7z Sym (Vhyh — I) ='e; ® e1 4+ sym(1(A'py)) + sym Vot (17)

Additionally, using (8% (x1,-), B%(x1,-)) € B for a.e. z1 € (0, L), one can easily check that
/(xgwg — zopP)da’ = —(w" — w)/(m% + 22)d2’ — 0 strongly in L.
w w
Next, we compute the symmetrized strain using decomposition :

1 1 1
symG" = — Sym((Rh)TVhyh - I) = 23 ym((R" = D)'Viy") + o5 sym(Vay" — 1)

=
1 1 1

=72 sym((R" — )T (Vyy" — RM)) — 72 sym(R" — I) + 72 sym(Vyy" — 1)

=" ! sym(R" — I) + ey @ e1 4 sym(1(A'py)) + sym V0"

h?
1
=u'e1 ®ep +sym(u(A'py)) — §A2 + sym V" + o
=: sym H + sym V" + o,

where 6", 0" — 0 strongly in L?(Q,R**3), and sym H = v'e; ® e1 + sym(1(A'p,)) — 342, In
this way we decomposed sym G” into a fixed and a corrector part. A part of sym H can be
further transferred to the corrector terms as follows:

symH = (4 5 (042 + (1)) ) o1 © 2 + sym(u(A'pyr))

1 0 vhw —vhw
t3 viw  w? + (vh)? , vhUh )
/ !,/ /
—vhw vhUh w? + (v3)

=: sym(u(mg)) + sym V" — sym(910”)

where
ma = (0 + 5 (W) + (1)) )1 + A'pa, (18)
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and
TUhW — T3VHW

o'(z) =h sxo(w? + (vh)?) + Sasvhvl
3%20hvh + pas(w® + (vh)?)
Finally, we have decomposition

sym G" = sym(u(mq)) + sym Vo™ + 0", (19)

with the updated corrector sequence ¥" (by adding the function o to the original ¥") and
the L?-zero convergent part o”.
The stress field E? : Q@ — R3*3 is defined by

E" .= %th(-, I+h2Gh).

The assumption (C3) on W, in particular estimate , implies that W is differentiable
a.e. in x € € and

VG eR¥>3 VYh>0 : esssup|DW"(z, I+ G) — AMx)G| < r(|G))|G],
z€Q

and therefore (see the property (a) of Q"),
IDW" (-, T + B2G™)| < r(h?|G")h?|G"| + Bh?|G"|, a.c.in Q.

Let us denote the set
By ={zxeQ : hzlGh(:v)] <1},

then from the previous inequality
IDW"(-, T + h*G")| < Ch?|G"| pointwise in By,

which yields
|E" < C|G"| pointwise in By, .

On the other hand on Q\By, i.e. on the set where |G| > h™2 a.e., applying hypothesis (H5)
we conclude

|E"| < % (u + R2GM) + 1) < % (h?\Ghy +V3+ 1) < C|G"| pointwise in Q\Bj, .
Therefore, we have a uniform estimate on the whole set,
|E"| < C|G" pointwise in Q, (20)

which together with the uniform L2-bound for the strain sequence (G”) implies the uniform
L?-bound on (E") and consequently the weak convergence (on a subsequence)

EM ~E  in L}(Q,R¥3).

12



2.5. Representation of elastic energy functionals

In this subsection we briefly recall a variational approach for general (non-periodic) si-
multaneous homogenization and dimension reduction in the framework of three-dimensional
nonlinear elasticity theory. This approach has been thoroughly undertaken in case of von
Kéarmén plate [32] and bending rod [22], while the linear plate model has been outlined in [§].
The theorem on geometric rigidity provides a decomposition of the symmetrized strain to a
sum of a fixed and a corrector part (cf. previous section). Utilizing the corresponding Griso’s
decomposition [I7, (18] gives a further characterization of the corrector part, which enables
an operational representation of the elastic energies (cf. Lemma below), suitable for the
application of appropriate I'-convergence techniques to eventually identify the limiting elastic
energy.

In the following we only provide basic steps of the method and state the final results. To
start with, let us define so called lower and upper I'-limits. For a monotonically decreasing to
zero sequence of positive numbers (h) C (0,+00), m € L*(£,R?) and an open set O C (0, L),
we define:

/C(jl)(m, O) = inf { lhiﬁionf Q" (z,sym1(m) 4 sym V4" dz |

OxXw

(60, b, h) = 0 in L3O x w,R?), (6, 94) = 0 in L%(0) }

ICz;l) (m,O) = inf { lim sup Q" (x,syma(m) 4 sym V") dz |

rlo  JOoxw

(0, b, hglt) = 0 in L2(0 x w,B%) , (9}, uh) —» 0in L2(0)}.

The above infimization is taken over all sequences (") ¢ H'(O x w,R?) such that
(Yl hph hph) — 0 and twist functions t(14,4%) — 0 strongly in the L2-topology as h — 0.
The identical proof to the one presented for Lemma 3.4 in [32] gives the continuity of IC(_h)

and IC(Z) with respect to the first variable. Utilizing a diagonal procedure yields the equality

of IC(h) and IC?;L) for a subsequence, still denoted by (k), on L?(Q, R3) x O, where O denotes

a family of open subsets of (0, L). More precisly this is done by choosing a countable dense
subset of L?(2,R?) and a countable dense family of open subsets of {2 and then using the
continuity property (see [§] for details). This asserts the definition of the functional

Ky (m, 0) = Ky (m, 0) = Ky (m,0), ¥m e LAQR?), YO€O. (21)

Adopting the strategy developed in [22] cf. Lemma 2.9 and Lemma 2.10] and [32] cf. Lemma
3.8] one can prove the following key lemma. The proof is given in [8, Lemma 2.1] and the
orthogonality property is proved in [22, the proof of (III) in Lemma 2.9].

Lemma 2.5. Let (h) C (0,+00), h | 0, be a sequence of positive numbers which satisfies
for every open set O C (0,L). Then there exists a subsequence, still denoted by (h), which
satisfies that for every m € L*(Q,R3) there exists (Y1) € H'(Q,R3) such that for every open
subset O C (0,L), we have

Kny(m,O) = lim Q"(z,sym1(m) + sym Vol Ydz (22)
hi0 JOxw

and the following properties hold:
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(a) (" hwfng, h@bﬁug) — 0 and f(i/f,]%g,wﬁ%g) — 0 strongly in the L>-norm as h | 0.

m,1»

(b) The sequence (|sym Vil |2) is equi-integrable and there exist sequences
(vh) c HY((0, L),Rg’lfvf) and (V1) € HY(Q,R?) satisfying: ¥t — 0, 97, — 0 strongly in
the L?-norm, and

sym V" = syma((¥7,)'per) +sym Vo, .
Moreover, (|(¥R)'1?) and (V9% |?) are equi-integrable (on a subsequence) and the fol-
lowing inequality holds

s sup (12l 0y + 1909 200wy ) < CBImIB 20y + 1),

for some C > 0 independent of O C (0, L).

(¢) (orthogonality) If () ¢ H(Q,R®) is any other sequence that satisfies (a) and (sym V")
is bounded in L?(2,R3*3), then

1}3?(} Al (syma(m) + sym Vo) - sym Vi, o''de = 0. (23)
Q

(d) (uniqueness) If (¢*) ¢ HY(Q,R®) is any other sequence that satisfies and (a), then
| sym Vol — sym V50" || 12(q) = 0,
and (|sym V,0"|?) is equi-integrable.

An important feature of the method is the localization property of the relaxation sequence
(@ZJ,@Z), i.e. if we know the relaxation sequence for the interval (0, L), the relaxation sequence
for an arbitrary open subset O C (0,L) and fixed m € L?(2,R?), is simply obtained by
restriction. This follows from formula .

Finally, we provide the integral representation of the functional (s (cf. [22 Proposition
2.12]). Recall from (18) that my is of the form mgq = (u' + $((v5)* + (v})?))er + A'py.
Therefore, we consider the mapping m : L(0, L) x L?((0, L),R3?) — L?(Q,R?) defined by
m(o, W) = ge1 + Wp,.

Proposition 2.6. Let (h) C (0,+00) be a sequence monotonically decreasing to zero. Then
there exists a subsequence, still denoted by (h), and a measurable function Q° : (0,L) x R x
R3 — R depending on (h), such that for every open subset O C (0,L) and every (o,¥) €
L?(0,L) x L?((0, L), R3*3) we have

skw
Kny(m(o, ¥),0) = /OQO(xl,Q(xl),axlllf(xl))dxl. (24)

Moreover, for a.e. x1 € (0,L), Q°(x1,-,-) : R* = R is a bounded and coercive quadratic form.
At this point we also define function Q9 : (0,L) x R® — R by
QY (z1,v) = mi{g Q%(x1,2,v) forallv € R® and a.e. 21 € (0,L),
zZE
and function gg : (0, L) x R?® — R satisfying Q(z1,ax1 F) = Q°(w1, 0o(z1,ax] F),ax1 F) for
all F e ngxvf and a.e. 21 € (0, L). One can also prove that Q{(z1,-) is a bounded and coercive

quadratic form for a.e. z; € (0,L). The linear operators associated with the quadratic forms
Q%(x1,-,-) and Q°(x1,-) are denoted by A®(x1) and AY(x1), respectively.
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2.6. Variational derivative of the limit elastic energy

Let (h) C (0,400) be a monotonically decreasing to zero sequence and let m € L?(Q, R?)
be given. According to Lemma there exist a subsequence still denoted by (h) and a
relaxation sequence (y!) C H' (2, R3), depending on m, satisfying (wﬁm, hwﬁw, hwﬁw) —0
and t(y? wﬁ%g) — 0 strongly in the L?-norm, such that the limit elastic energy Kny(m) =

m,2»

Kny(m, (0, L)) is given by
K (m) = lim / Q"(x, syma(m) + sym V), )de
Q

1
= lﬁx& 3 AM(syma(m) + sym Vo)« (syma(m) + sym Vo, )da .
Q

In the following we compute the variational derivative of Ky at the point m. Let n €
L?(92,R3) be a test function. Then, by definition

K (m) ] = lim K(m+en) — K(m) ‘

2
om el0 IS ( 5)

With a trick of successive adding of the corresponding relaxation sequences and using the
orthogonality property , for a suitable subsequence of (h) we calculate:

Ky (m +en) — Ky (m)

1
=lim~ [ A"(syme(m +en) +sym Vil ) (syma(m + en) +sym Vol )da

hl0 2 Jo
1
— 1,3101 5 Al (syma(m) + sym V) (syme(m) + sym Vot )dz
Q
1
= 1&101 3 Al(syma(m +en) + sym Vppl ) syma(m + en)da
Q
1
—lim = [ A"(symu(m) 4 sym V") : syme(m)dz
Rl0 2 Jq
1
= 1}58 3 AM(syma(m + en) + sym Vhlbﬁﬂ_m) - (sym(m) + sym V" )dz
Q
+ 1}3101 g AP (syma(m 4+ en) +sym Vil L)« (syme(n) + sym V! )da
Q
1
—lim = [ A"(symu(m) 4 sym Vol : syme(m)dz
hi0 2 Jq
1
=lim= [ A"(symu(m)+sym V,o") : syme(m + en)dz
nl0 2 Jo
+lim S Al (syma(n) + sym V) : syma(m + en)dx
Rl0 2 Jq
1
—lim = [ A"(symu(m) 4 sym Vo) : syme(m)da
Ri0 2 Jq
= 1}3&)15/ Al (syma(m) + sym Vo) - syma(n)dz
Q

2

+ lim 5/ Al (syma(n) 4+ sym V,9!) : symo(n)dz.
Rl0 2 Jq
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Finally, according to the definition and utilizing the uniform L*°-bound for the sequence
of tensors (A"), we infer

Ry (m) h hy.
T[n] = 1}1\1&)1 QA (syme(m) + sym Vpthy ) @ syme(n)de . (26)

3. Derivation of homogenized Euler—Lagrange equations — proof of Theorem

Taking the L?-derivative of the energy functional £" defined by , one finds the Euler—
Lagrange equation in the weak form:
sE"(y")
dyh

[¢] = /Q (DWh(x, Vi) 1 Vg — b3 (fado + f3¢3)) dz =0, (27)

for all test functions ¢ € HL(Q,R3). Let y" be a stationary point of £", i.e. it satisfies
. From the frame indifference of W it follows that R DW" (2, RF) = DW"(x, F) for all
R €80(3), F € R33 and a.e. x € Q, which implies (using that Vj,y" = RMI + h2G"))

DWh(x, Viy") = RPDW" (2, I + h2G") = W2 RM'E™ (28)
Taylor expansion around the identity gives
DWh(z, I+ h2G") = K2 D*W"(z, 1)G" + ¢"(z, K2G™),

where ¢" is such that [¢"(-, F)|/|F| < r(|F]) uniformly in Q, for all F € R* and h >
0. The latter follows from the assumption on admissible composite materials. Since
D*Wh(z, I) = A"(x) and A”(z) is a symmetric tensor, the above identity yields

1
EM2) = AM(z) sym G (z) + ﬁgh(x, h:Ghy, (29)
which after employing (19) leads to (recall that mg = (v + L((v4)? + (v4)2) )er + A'py):
7 V2 3

1
E" = AM(symo(myg) 4+ sym V0" + ﬁch(-, h2Gh) + AMo" (30)

3.1. Orthogonality property

In order to identify the fixed part my of the symmetrized strain as a stationary point of
the limit energy, we first prove the following result.

Lemma 3.1. Let (Ah) be a sequence of tensors describing an admissible composite material,
let myg be the fized part of the symmetrized strain defined by (@, and (YM) ¢ HY(Q,R3) the
corresponding corrector sequence in satisfying: (PP, hpl hpl) — 0 and (%, ¢¥5) — 0
strongly in the L?-norm, and | sym Vhi/JhHLQ(Q) < C. Then, for every sequence (©") C
HY(Q,R?) satisfying: (%, hol hol) — 0 and t(ph, o%) — 0 strongly in the L*-norm, and

(| sym V0" |?) is equi-integrable, the following orthogonality property holds
lgﬁ)l A Al (syma(mg) + sym V") - sym Vi, oltdz = 0. (31)
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Proof. Let (") ¢ H'(Q,R3) and (¢") € H'(£2,R3) be sequences satisfying the assumptions
of the lemma. Applying the Griso’s decomposition to the sequence (¢") (cf. [22, Corol-
lary 2.3]), there exist sequences (®") c H'((0,L),R3_), (¢") c HY(Q,R3) and (o) C
L2(92,R3*3) satisfying:

skw

sym thoh = sym Z((fbh)/pggl) + sym thbh + o, (32)
d" - 0, o" — 0, 0" — 0 strongly in the L?-norm, and
19" 11102y + 110" £20) + VR I 22() < Cllsym Vil 120), YA > 0. (33)

Furthermore, there exist subsequences (®) and (¢") (still denoted by (h)) and sequences
(®") ¢ H'((0,L),R?) and (¢") c H'(Q,R3) such that [{®" # &"} U {(D") # (d")}] — 0
and |{¢" # ¢"} U{V¢" # Vé"}| — 0 as h | 0, and the sequences (|(®")|2) and (|V,0"?)
are equi—integrable (cf. [16] and [22, Lemma 2.17]). Notice that, due to equi-integrability of
(| sym V5,"[?), the decomposition (32) is valid with (®") and ((bh) replaced by (®") and (¢").
Also, observe that without loss of generahty we can assume that for each h, ®" and th are
smooth. The rest of the proof will be divided into two parts showing the property (31]) using
the decomposition (B2) with (&) and (¢").

Part 1. The equi-integrability property of the sequence (qgh) allows us to modify each qz;h to
zero near the boundary (cf. [32, Lemma 3.6]), thus, making it an eligible test function in the
Euler-Lagrange equation . Using the identity and the modified ¢" as a test function
in the Euler-Lagrange equation , after division by h?, we obtain (according to )

/ RMAM symo(myg) + sym Vi) : Vydlde = / R" (Eh ~ %gh(-,hQGh) —Ah0h>  Vpolda
Q Q h
_/h(f2q33+f3q3g)—/3h (12§h(-,h2Gh)+Ahoh> : Vpo'da .
Q Q h

Obviously, the first integral on the right-hand side and the second term in the second integral
converge to 0 as h | 0. Let us examine the term

1 -
3 / RMM-, h2GN) : Vy¢hdz
Define the sets S¢ := {z € Q : h?|G"(z)| < h*} for 0 < a < 2. On S we have

Ch -,h2Gh Ch -,h2éh N N N
[ G f(zQG’"‘I N6 < sup ¢ 120 22C0 22‘éh| N p2ien < ne b et < r(neyjah

Therefore,

1

2 / R RGN Vgt da

h

< (BB oo @) |G| 120 V16" [l 12() < Or(h) —

as h | 0. On the other hand, on Q\S}' we have a pointwise a.e. bound

1 (0%
ﬁ’ch('athhﬂ < C|Gh] a.e. on Q\ Sy,
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which in fact holds pointwise a.e. on €. This follows by the traingle inequality from
using and |A"(2)G"(x)| < B|G"(z)] for a.e. z € Q. Therefore, using the Cauchy-Schwarz
we find
1
h?

/ R, h2GN) - Vi¢lda
Q\Sg‘

<c / G|Vt |da
O\S

1/2

1/2
<C (/ \Gh|2dx> (/ yvh&hﬁdx) —0.
Q\Sy Q\ Sy

The latter statement (convergence to zero) follows by the equi-integrability property and the
fact that |Q2\S;*| — 0, which follows from the Chebyshev inequality. Thus, we have shown

1}5101 RMAM (syma(myg) + sym V") : Vipodhde = 0.
Q

Since R" — I strongly in the L>®-norm, it follows that

l}grol Al (syma(mg) +sym V") : Vyo'de =0,
Q
while the symmetry property of A"(sym1(mgq) + sym V;,9") eventually implies
1}3101 Al (symo(mg) + sym V") : sym Vodz = 0. (34)
Q

Part 2. Again, the equi-integrability property of the sequence (éh) allows us to modify each
®" to zero near the boundary, thus, making the following functions

(x) = (Bl + Bly(ar)as, —,

0

xT

1 ~ ~
<I>}f2(s)ds + <I>I§3(x1)x3 , (35)

1 [* . ~
5 [ Bles = B ane).

eligible test functions in the Euler-Lagrange equation . One easily calculates

(Fy) (x1)az + (Bf3) (w1)as 5(Ph3) (v1)ws  —35(®hs) (w1)2

sym V¢ = %(@53)’(331):53 0 0
—5(283) (z1)22 0 0
= symo((®")p).
Using th as a test function in together with the symmetry property of the matrix
DW"(., F)FT, we obtain
1 R
h2/ DWh(z, RM(I + h2GM)) : Vo' da
Q
1
T n?
1 R
- h2/ R'DW"(x, I + h2Gh) ((Rh)T I+ hQ(Gh)T(Rh)T) . Vi dhde
Q

/ RMDW(z, I + R2GM)(I 4+ h2GMT(RMT : sym V¢l dz
Q

_/RhEh(I+h2Gh)T(Rh)T:symz((cih)’pz,)dx
Q

— / RM'EM GL((Rh)T ~I)+ h(Gh)T(Rh)T>  hVpotda .
Q
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Therefore, the Euler-Lagrange equation becomes
/ RM"EMI 4+ h2GMT(RMT : sym (") py)da
Q

1 N N N
— / R'E" <h((Rh)T -1+ h(Gh)T(Rh)T> L hVpgda + h / (fod + f30%)da.
Q Q
(36)
Since (hq@é’, hqgg) — 0 strongly in the L?-norm, the force term vanishes at the limit. According

to 1' | (@] £2(0,z) 1s uniformly bounded implying the strong convergence hVd" — 0 in
the L“-norm, therefore,

1 N
li - hEh T 1) : h =0.
iiﬁ)lh QR ((R") ) : hVpo"'dz =0

In order to infer zero at the limit A | O for the remaining term on the right-hand side in ,
namely

h / R'EMGMT(RMT : bV o"de
Q

we need to replace the sequence (éh) with the one obtained by means of Lemma We take
the sequence s, = 1/v/h and obtain a sequence (%h) satisfying Héhle,m(O’L) < C'sp, for some
C > 0. Notice that we have H(%}j)’ — (®"Y|| 2 — 0. We easily conclude ||thqz:5h||Loo < Csp
where, in view of , notation ngbh is self-explaining. From the latter we conclude that

lim h / RMEMGMT(RMT : hVdlidz =0,
hl0 Q

which implies
lim [ RMEMI+h2GMT(RMT : syma((®") py)dz = 0.

hlo Jo
Obviously,
lon | h2RMEN(GMT(RMT - symo((9")py)dz = 0,
and therefore,
ton | RMEMRMYT : symo((®M)py)dz = 0. (37)
Next, we prove that
1}5101 A E":sym z((éh)/pz/)dx =0. (38)

This follows by writing

/QEh csym (@) py)dx = /Q (Rh + (I — Rh)) E" (Rh + (I — Rh)>T :sym Z((‘—:I)h)/pa:’)dﬁa

and using the convergence result with the fact that R" — I strongly in the L>-norm.
Now, recall that

1
Ah(sym 1(mg) + sym Vh¢h) = EM — ﬁ(h(-, h2Gh) + oh,
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where 0" — 0 strongly in the L?-norm. Using truncation arguments on the sets Sy and its
complement, as in the first part of the proof, we conclude

1
1' _ h . 2 h . @h/ ’ — .
lim QhQC (-, h*G") - syma((@")'py)da =0

Since limyg [, 0" : sym 1((®")'p,)dx = 0, convergence result implies

lim | A" (symo(ma) +sym Vi) sym1((®"Ypy)dz = 0.
Q

From this it follows

lim | A" (syma(ma) + sym V") - syma((8")por)de = 0. O
Q

3.2. Identification of the limit Fuler—Lagrange equations

Let us now more precisely identify terms in the Euler-Lagrange equation and consider
the limit when A | 0. The same reasoning as in Part 2 of the proof of Lemma [3.1] gives, after
division by h?, the Euler-Lagrange equation in the form

/ RMEMTI + R2GMT(RMT @ sym V0" dz
Q
1
= / RME" (h((Rh)T ~1)+ h(Gh)T(Rh)T> : hV e dz + h/ (f205 + fs¢})dz,
Q Q
(39)
for all test functions ¢" € H (€2, R3). The aim is now to identify the limit equation in as
h | 0. We will do the computations under the assumption that limsupy,q || sym V¢" || <
oo. Using the facts that, up to a term converging to zero strongly in the L?-norm,
1
E" = AM(symu(mg) + sym V,9") + ﬁ(h(w n*Ghy, (40)
R" — T strongly in the L*-norm, and
lim [ W2RMEMGMT(RMT - sym V¢ dz =0,
hi0 Jo
the limit A | 0 (if it exists) of
/ R'EMI + h2GMT(RMT : sym Vo' da:
Q
equals the limit

1
1}3}8 (A"(syma(myg) + sym V") + ﬁCh(-, h2GM)) s sym Vo' dz .
Q
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The remainder term 1712 Jo ¢"(-, h2G") : sym V;,¢" dz vanishes in the same way as in the proof
of Lemma and in the limit as h | 0, equation reduces to

1}5101 Al (syma(my) + sym V") : sym V,¢" da
Q

—tim ([ BB (LR D)+ O R 1ot o+ [ (adh + faodas)
(1)

First, consider the test function ¢(z) = [ ¢11(t)er with ¢11 smooth. Since ¢y = ¢p3 = 0,
sym V¢ = ¢11(z1)e1 ® er, and hVy¢ — 0 strongly in the L?-norm, (41)) amounts to

1}51(} Al (syma(mg) + sym V™) : d11(z1)er @ ey dz = 0. (42)
Q
Next, consider test functions of the form gb?j () = hajdij(x1)e; for i =1,2,3, j = 2,3, where

¢i; is smooth with ¢;;(0) = 0. The functions qb?j obviously satisfy (qb?j’l,hgb?j’z, hgb?j’g) — 0

and t(qﬁ?jz, qﬁ?jﬁ) — 0 strongly in the L?-norm. Calculating
sym V¢ = sym (ha;dfje; | 525055 | 03jdij€:)

we easily conclude from that

1}5{)1 AP (syma(mg) +sym V") : ¢(x1)e; @ ejda = 0, (43)
Q

for all t = 1,2,3, 7 = 2, 3. Finally, consider the test function given by

1 [ 1 /™
¢h(gj) = (@12(561)1’2 + <I)13(371):c3 " / @21(s)ds + @23(:131)373 " / P3 (S)dS + @32(.%1)1’2) ,
0 0

where @ : [0,L] — R3*? is smooth and ®(0) = 0. On the right-hand side of , using
the convergence results: R" — I strongly in the L>-norm, hG" — 0 strongly in the L*-
norm, A" — A (the definition of A is given in ) strongly in the L*°-norm, as well as the
approximation identity for E", we are left with

lim [ A"(symu(mg) + sym V") AT : @ da

hi0 Jq
+ /OL <f2(961) /Oxl ®o1(s)ds + f3(w1) /Ogc1 ‘1’31<3)d3> dry .

Let us now consider the first term of the obtained expression. Due to the real matrix identity
XY :Z=-X:ZY, for Y being skew-symmetric matrix, the first term equals (up to a minus

sign)

lim [ A"(symu(mg) +sym V") : Adz,
hl0 Jo

and since the first matrix is symmetric, the latter in fact equals to

1}5}8 Al (syma(mg) + sym V") : sym(®A)dz . (44)
Q
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The matrix ®A can be explicitly computed, and its symmetric part is given by

D1ovh + P13vy 5(Po3vh + Pr3w)  —5(Pasvhy + Prow)
sym(q)A) = %(@231}3 + (131311)) (19121)5 + Po3w %((I)lgvé + ‘1)12Ué)
—%(q)z:své + $row) %(qhsvé + ®y9vh) D305 + Pogw

Defining the sequence of test functions (¢74) by

Do3vh + Pr3w — D305 — Prow
<pf21(a?) = hxzy | Piovh + Posw | + has D30, + P10 ,
D30 + P1ovh 1305 + Pozw

it is straightforward to check that

sym(®A) = sym thpff‘ + (®190) + P1305)e; ® e + ol , (45)

h converges to zero strongly in the L?norm as h | 0. Observe that the sequence of

test functions (¢") satisfies (cpﬁl’l,hwﬁm,h(pfg,g) — 0 and t(cpﬁl’Q,cpZ’g) — 0 strongly in the
L?-norm. Utilizing in expression , we confer that due to the orthogonality property
, convergence result and strongly to zero convergence of 0", the term in vanishes
in the limit as A | 0. Since,

where o

Oy (1)wg + Phg(w1)ws  §Phg(a1)ms —5Phg(w1)ao

sym V¢ = %‘1)/23(1,‘1)$3 0 0 =symu(®'p,),
—%{)’23(1'1)332 0 0
(46)
the left-hand side in can be written as
1;3?(} Al (syma(mg) + sym V") - syma(®'p,) daz . (47)
Q

Combining , and , the resolved limiting Euler—Lagrange equation reads

3
1}%?01 A" (sym(mg) + sym V") : sym <¢1161 ®e1 + Z dije; @ ej + Z(‘I’/Px’)> dx
@ i=1,j=2

L
=— /0 (f2®12 + f3®P13)dzy, (48)

where ®1;(z1) = o @15(s)ds for j = 2,3. Now, to conclude the proof we claim, that the
obtained equation (neglecting the terms Z?:l, =2 ¢ije; ® e; in the first sum due to 1) can
be interpreted as

0K h) / b :

W(md) {¢11€1 + @ Px'} =— [ (f2@12 + f3P13)day . (49)
0

Notice that, due to , we could also neglect the first term in , but we will make use of

it later. Since (sym V") is bounded in the L?-norm, according to [22] Lemma 2.17], there

exists a subsequence (still denoted by (h)) and sequence (¢*) such that (| sym V" |?) is equi-

integrable and || sym V9" — sym Vhi,bhHLz(Oh) — 0, where O" C Q such that [Q\O"| — 0.
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From we see that the same limit equation will be obtained if we replace the corrector
sequence (") by (). Let (1/and) be the relaxation sequence for my from Lemma Using
the coercivity of Q" and the orthogonality properties and of both sequences (¢, d)
and ("), respectively, we find that

ol sym Vi (9, — 3|2, < /Q Q" (&, sym Vi(wh, — §"))da

1 -
= 5 [ Afvmitna) + sym Vit s sy Ve, - )

Q

1 h hy . h _ Th
—5 A" (syma(mg) + sym Vpp™) : sym Vi (y,, — ¢")dz — 0
Q

as h | 0. Therefore, we can also replace the sequence (") by (w%d) in and follows
from . To prove the stationarity of the point (u,ve,vs,w) for the functional £° from the

equation we note the following;:

S(Kpy 0 mg 5K
((hgu)(u,vg,vg,w)[ud} = ﬁ(md)[udel], VudEHé(O,L),
S(K oK
W(u,w,vg,w)[vﬁ = 5;;‘)(md)[(vf)’el+q>;dpml],forz':2,3, vod € HZ(0, L),
S(Kny 0 mq) 5K
— (o, v w)w’] = S mg)[@ape], Vo € HY(0,L).
Here
0 —(v) 0 0 0 —(vgy 0 0 0
Tg=| (3 0 0|, Py= 0 0 0 , ®pa=10 0 —uwd
0 0 0 (@) 0 0 0 w? 0

This finishes the proof of Theorem

In the subsequent part of the section we identify the limit Euler-Lagrange equations.
Recalling the approximation identity , the weak convergence E" — E in L?(Q,R3*3),
and utilizing convergence properties for the remainder terms, we can pass to the limit in

equation and obtain

3 L
/ E:sym (¢/11€1 Rer+ Y dyei®e;+ Z@’Px/)) dz = —/ (faP12 + f3P13)dar .
Q i=1,j=2 0
In view of identity , the latter equals
3
/ (E11¢'11 + Y By + 2Eu®y(n1) + 23En®is(a) (50)
Q

i=1,j=2

L
+ I3E12‘I>/23(561) — xQElgq)ég(xl))dx = —/ (fo®12 + f3P13)dxy .
0
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Using the moment notation @)f and the fact that (i),lj = &y for j = 2,3, becomes
L, S o L R _
/ (E11¢/11 + Z Eijdij + E11 9y + E11 P54+ E12Ph3 — E’13<I>’23)dx1
0 i=1,j=2

L
= —/0 (fg(i)lg + fg(i)lg)dl’l . (51)

Now by the arbitrariness of test functions, we easily derive the corresponding strong formu-
lation for the moments. The zeroth-order moments satisfy

E=0 in(0,L). (52)
The first-order moments Ell and En satisfy second-order boundary-value problems:
Efy+ f=0 in(0,L),
En(L) = Ejy(L) =0,

and
EYy+fs=0 in(0,L),

En(L) = Efy(L) =0,

respectively. Finally, the first-order moments Em and Elg satisfy the first-order problem
Ely = Ei3=0 in(0,L),
E2(L) = Ey3(L).

It remains to derive constitutive equations, which connect the moments of the limit stress
with limit displacements and twist functions. For ¢ € L?(0,L) and ¥ € L?((0, L), R%%3),
recall the functional

L
Ky (m(0. ¥)) = /0 Q°(z1, o), axl W (ar))da |

where m(o, ¥)(x) = o(x1)e; + ¥(x1)p,r, and the functional

L L
lC?h)(\I') = /0 Q?(azl, axl¥(xy))dx; = /0 Qo(ajl, oo(z1,ax1W(z)), axl U (zy))dzy
= K (mo(eo, ¥)) ,
where g : (0, L) x R? — R is optimal for a given axl . By Lemma (identity ), there
exist sequences () C HY(Q,R3) and (¥%) c H*(Q,R?) such that:

Kny(m(o, ¥)) —1}%1/@ z,syma(m(g, ¥)) + sym Vi, )da

K (¥) = lim [ Q" symi(m(o. ¥)) + sym V) da
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Using the orthogonality property and tricks as in Section we calculate:

I (m(e, ¥))

50 (6] =1lim | A(syma(m(o, ) + sym Vi) : o(¢er)da (53)

5/C?h)(\11)

————[®] =lim Ah(sym 1(mo(o, ¥)) 4 sym Vhwg) s syme(Pp,)dx, (54)
ow R0 Jq

for all ¢ € C3°([0, L]) and ® € C3°([0, L], R3?). On the other hand, from the representation

skw
of the function QY as a pointwise quadratic form, we have

K0y (¥

L
50 [®] = /0 A(zy) ax1 U (21) - axl ®(z1)da; . (55)

Now, if we consider mg(z) = (u' + 1((v5)* + (v})?))e1 + A'p,, it follows from formulae

and that
Ky (m(a, A))

do
for all ¢ € C§°([0,L]), where a(z1) = o + 3((v)? + (v})?). In particular, this implies
the optimality of the function a for matrix function A’ in the sense that QJ(-,axl A’) =
Q"(-,a,axl A’). Equating expressions in and for ¥ = A’ and g9 = a, we obtain the
identity

[¢] =0

L
/ Ad(xy)axl A'(z1) - ax] ®(x1)dz; = / E :(®py)de,
0 Q

for all ® € C§°([0, L],Rg’kxvf). From the latter we recognize the following system

—(A(l) axl A,)g = EH y
(A(l) axl A,)Q == Ell N
_(A(l) axl A,)l = Elg — Elg s

which is a linear second-order system for the limit displacements vo, v3 and the limit twist
function w, and which needs to be accompanied by the following boundary conditions v;(0) =
vi(L) = 0 for ¢ = 2,3, and w(0) = 0. The obtained boundary-value problem represents the
homogenized Euler-Lagrange equations for the von Kdrman rod model. Finally, the scaled
displacement u can deduced from the optimality property of the function a for the matrix

function A" and the initial condition u(0) = 0.

4. Stochastic Homogenization

In this section we will give an explicit cell formula for the quadratic form Q° (limit energy
density in expression ) under the assumption of random material along the characteristic
dimension of the rod. Providing the cell formula for the limit energy in the stochastic setting,
we will also recover periodic and almost periodic structures. The methods we are using here
are largely based on works [12], [20] and [33]. Firstly, we will introduce the general notion
and tools of stochastic homogenization, thereafter we will explore the tools needed for thin
structures and finally derive and prove the cell formulae.
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4.1. Stochastic homogenization

Definition 4.1. A family (T;)zern of measurable bijective mappings T,: = — Z on the
probability space (E,.7,P) is called a dynamical system on = with respect to P if:

1. T is additive, i.e. Ty o Ty = Tyyy for all z,y € R";

2. T is measure- and measurability-preserving, i.e. T, B is measurable and P(T,B) = P(B)
for allz € R™ and B € F;

3. The mapping A: = x R" — =, defined by A(p,z) = Tx(p), is measurable in the pair of
o-algebras (F x L™, F), where L™ denotes the family of Lebesque measurable sets.

The key property, which will allow us to derive the cell formula, is ergodicity.

Definition 4.2. A dynamical system T is called ergodic, if one of the following (equivalent)
conditions is fulfilled:

1. If f: 2 — E is measurable s.t. f(p) = f(Typ) for all x € R™ and a.e. p € =, then f is
P-a.e. equal to a constant.

2. If for some B € F for all x € R™ the set (1B U B) \ (I, BN B) is a null set, then
P(B) € {0,1}.

One of the most important consequences of ergodicity is the famous Birkhoff’s ergodicity
theorem:

Theorem 4.1. Let T be an ergodic, dynamical system and g € L'(Z). Then

. 1
tim o [ aTiae = [ (a2 (56)

for almost all p, for all bounded Borel sets A C R™ with |A| > 0.

Let LP(Z) denotes the set of measurable p-integrable functions b: = — R. In order to

guarantee that the spaces LP(Z) for p > 1 are separable we assume that the o-algebra .# is
countably generated. The dynamical system allows for more structure on the space =. Denote
by U(x) the unitary operator

U(x): L*(E) = L*(E), U@)b=>boT,.
If for b € L?(Z) and 1 < k < n the limit

lim b(Th.e,p) — b(p)
hl0 h

exists in the L?-sense, then we call it the k-th derivative of b and denote it by Dpb. The
operators D, are infinitesimal generators of the maps 1%, . Thus, iDq,...,iD,, are commuting,
self-adjoint, closed and densely defined linear operators on the separable Hilbert space L?(Z).
Let Dy(Z) denote the domain of the operator Dy, and define the space W12(Z) as

WL2(Z) := Di(E)N...NDy(E),
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equipped with norm

1l1F1.22) = 16172y + D _lIDiblIZ2(z)-
k=1

We also define the semi-norm
|b|%/vly2(5) = Z”Dini?(E) )
k=1

and analogously the following Sobolev-type spaces:

Wk2(Z):={bec L*(E) : DY ...D%"b e L*(2), a; + ...+ an <k},
WoR(E) = [\ W (E).

Furthermore, we define the set of stochastically smooth functions as
CP(E) :={f e W®XE) :Y(ay,...,a,) €ENg, DM ...Dbe L*(=)}.

The space C*°(Z) is dense in L2(Z) ([6], Lemma 2.1(b)) and separable ([6], Lemma 2.2). At
this point we would like to emphasize, that in the stochastic setting we do not have Poincaré-
or Sobolev-type estimates. Hence, the L2-integrability of higher-order derivatives does not
yield an L>°-bound on the derivatives. Especially, the space W2(Z) is in general incomplete
w.r.t. to the seminorm |- [yy1,2(z). Therefore, we introduce its completion denoted as Wh2(2).
Differential operators Dy, then extend uniquely as operators W12(Z) — L?(Z) to continuous
operators W2(Z) — L?(Z). The n-tuple of differential operators D = (Dy, ..., D,) will be
called stochastic gradient.

We say that elements p € = are typical, if the identity in the Birkhoff’s ergodicity theorem
holds for all g € C*(Z), and a trajectory = — T,p will be called typical, if p is typical.
Note that separability of C°°(Z) implies that almost every p € = is typical. This enables us
to prove the following.

Lemma 4.2. Let n = 1. Then for every b € L*(Z) with [-b(p)dP(p) = 0, there ezists
g € WH2(Z) such that
Dlg =b.

Remark 4.3. Notice that the zero mean value is necessary, since [ D1g(p)dP(p) =0 for any
g e WhH(=).

Proof. By [12, Proposition A.9.], there exists a decomposition

L(2) = Fpy(E) @ F2,(S) © R,

where
Fgat(E) .= Cl2{Dx : x € W'2(2)},
F2,(2) = Clp2{D x x : x € WH(2)}.
For n =1 we have D x x = 0 by definition, and the statement follows. 0
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The concept of two-scale convergence was first introduced by Nguetseng in [29] for periodic
problems, while Allaire further developed the concept and methods to a versatile tool [I]. For
the stochastic setting, the first definition was given in [6]. However, that concept is not well
suited for our purpose and we will instead use the following (slightly altered) definitions and
results given in [33].

Definition 4.3 (Weak stochastic two-scale convergence). Let (Tp)zcrn be a typical trajectory
and (v¥) bounded sequence of functions in L*(2). We say that (v¥) stochastically weakly two-

5 — ~ . 2 5.
scale converges to vP € L?(Q2 x Z) w.r.t. p and we write v¢ = vP if

tim [ v @plaTr,ide = [ [ o, phofa)blp)dadp()

for all o € CX(Q2) and b € C*(E). Vector-valued functions are said to stochastically weakly
two-scale converge, if every component stochastically weakly two-scale converges.

Remark 4.4. The difference in this definition to the original one in [33] is the space C*®(E)
instead of C°(Z) for the test functions b. This allows us to skip the assumption of a metric
on Z. Observe that the limit v may depend on the choice of the typical element, moreover,
the sequence (v°) may convergence for some typical elements, while not for others. From now
on we fix a typical p € = and suppress any dependence on it.

Definition 4.4 (Strong stochastic two-scale convergence). Let (v°) C L2() be a weakly
stochastic two-scale convergent sequence with limit v° € L?(QxZ). We say that (v¥) converges
strongly stochastic two-scale to v° if additionally

laiﬁ)l st(x)ug(:c)da::/E/Qvo(a?,p)uo(x,p)dwdp(p)

for every (uf) C L?(Q)) weakly stochastically two-scale converging to u® € L?(Q2 x Z). We
denote that by v° 2,00,

Lemma 4.5 (Extension of the test functions). If v° LN v, then

i [ v @@Lz, e = [ [ olap)e((p)dad(p)

holds also for b € L?(Z).

Lemma 4.6 (Compactness). Let (v°) be a bounded sequence in L*(S)), then there exists a

subsequence (not relabeled) and v € L*(Q2 x E) such that v° =N

Lemma 4.7. Let (uf) be a bounded sequence in WH2(Q). Then on a subsequence (not rela-
beled) u® — u® in WH2(Q) and there exists u* € L*(Q, WY2(Z)) such that

2 2
w24 and VuE = Vil + Dut.

The next lemma shows that convex/quadratic functionals are compatible with this concept
of two-scale convergence. A similar statement with proof can be found in [20].
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Lemma 4.8 (Lower-semicontinuity and continuity of quadratic functionals). Let (uf) be a
bounded sequence in L?(2,R™) such that uf 200 € L2 x Z,R"). Let Q: = x R™ — [0, 00)
be a measurable map such that for a.e. p € E, Q(p,-) is a bounded positive semidefinite
quadratic form, i.e. there exists a > 0 such that

1Q(p,v)| < alvf*, VveR™.

Then
Q(p, u’(p, x))dP(p)dz.

T

lim/Q(Ta_lxlﬁ,us(x))de/
&0 Jo Q

If additionally u® 2, u®, then

lim Q(Tg—lxlﬁ7 uk(x))dx = / Q(p, v’ (p,x))dP(p)dz.

el0 Jq QJ=E

4.2. Application in elasticity

In this subsection we closely follow [27], where analogous results where derived for the
periodic case. Since most of the statements can be proved in the same fashion, we will skip
those. In the following we work only with a one-dimensional dynamical systems 7', i.e. n = 1.
We could assume additional microstructure in the cross section (see for instance [22] for the
periodic case of bending plate), but for simplicity omit that.

Let (gp,) be a sequence of positive numbers, such that €, | 0 for A | 0. The random energy
density Wh : R? x = x R3*3 — [0, +-00] is then defined by

Wh(z,p, F) = W(T 1, p, F), (57)
where
(S1) for a.e. p € =, W(p,) is continuous function on R3*3;
(S2) for ae. pe =, W(p,-) € W(a, 8, 0, k);
(S3) there exists a monotone function r : Ry — (0, +00) such that 7(4) J 0 as § | 0 and

VG e R¥3 Wh >0 : esssup|Wh(x, p, I +G) — Q"(z,p,G)| < r(|G)|G|?,
e

where Q"(x, p,-) are quadratic forms defined as in (H4).
The limiting material properties depend strongly on the relation between h and &5, more

specifically on v € [0, +oc] defined by

= lim — .
hl0 €y,

To study the above introduced energies we need Sobolev-type spaces not only in =, but also
on = X w. Hence, we define

Wh(E x w) := Wh(w, L*(E)) N L (w, WH(E)),
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equipped with seminorm
2 2 2
|U’12/V1,2(axw) = [ D1ull72(2xw) + 102l 7225wy + 1050l 72(z 40 -

Similarly as in the purely stochastic Sobolev space, by W'2(Z x w) we denote the completion
of WH2(E x w) w.r.t. the seminorm | - lw1.2(2xw)- The following statement about stochastic
two-scale limit of scaled gradients can be proved as in [20].

Lemma 4.9. Let (u") € W12(Q,R3) and u° € L*(Q,R?) such that u* — u® strongly in
L%(Q,R?) and let (Vyu) be uniformly bounded in L?(Q, R3*3). Then u® depends only on x1.
Moreover,

1. if v € {0, 00}, then there exists
ul € L2((0, L), W1%(2))?) and u* € L*((0, L) x E,W1?(w,R3)), =0,
ul € L2(Q, WY2(2))?) and u? € L2(I, W2(w,R?)), v =00,

and
thh 2 (81’&0 + Dlul ‘ Vx/u2) .

2. Ify € (0,00), then there is a subsequence (not relabeled) and a function u' € L?((0, L), WH2(Ex
w,R3)) such that

1
Vou 2 (010 + Dyu! | ;kul) .

4.8. Cell formula

Definition 4.5. For a.e. p € = let Q(p,-) be a quadratic form associated with the energy
density W (p,-). For every o € R and U € R3*3, define the mapping Qg R xR3 =R by

skw 7
Qg(g, axl U)
inf [ [ Q(p,t(0er + Upor + (D191 )po) + (D19 | Vd?))da/dP(p), ~ =0;

= g inf [ [ Q(p,(0e1 + Upy) + (D109 | %Vx/ﬁl))dx’d}?(p) , 0<vy<o0;
inf [z [, Q(p: t(0er + Wpar) + (D19 | Vo)) da'dP(p) ¥ =00,
where the infimum is taken over all W' 91 V2 satisfying: W' € WLZ(E,R;{XV?),
wh2(=)3 7=0
’ ’ L2(E, W% (w,R3 =0
It e L WH2(E x w)?, 0<y<oo, and 9*¢ 52’ S(M’ N ’
W2 (w, R?), Y =00,

LQ(Wa Wl’Z(E)g) y V=00,

Proposition 4.10. Let (W") be a family of energy densities describing a random material

for rods defined by . Then the limit energy density Q°, defined in , is given by Qg
from Definition [{.5

Proof. We only prove the result for 0 < v < oo. The other two cases are very similar.
Using the previous general homogenization result it suffices to prove that for m = m(g, ¥) =
oe1 + Up,s it holds

. 1 0 0

lg{)l(ZIC(h) (m,zy + (-, r))) = Q5(0,ax1 V),
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for all p € R and ¥ € R3*3, for every Lebesgue point 2y, where Ky is given by . By

skw ?

Lemma for given m, there exist sequences of functions (¥") c H'((0,L),R3?) and
(") ¢ HY(,R3), with properties stated there, such that

. 1
Eﬁ)l(glc(h) (m7 xtl) + (_Tv T))) =

1
lim — li T 1. 7. UMYy, 9" )dz .
20 M e Q) (60 ) i

Using the lower-semicontinuity of quadratic functionals with respect to the stochastic two-
scale convergence we obtain

1 0
tim (5K sy (m. 2§ + (—r.7))

1
= l —1 T— 0. \Ijh ! / 'l9h d
"0 2 hjo (z?+(r,r>)wa< ot () + sy (9 pur) sy V0" ) do

1
> lim — inf ,t(m) + U )dP(p)dx,
i o /@gﬂ_m) / Qpatm) +U)aw(p)

where the infimum is taken over all possible two-scale limits of
sym ¢((U")par) + sym V59",

i.e.

{sym L(D1 ) + Symlvxmﬁ‘l - Ul e Wh2(2,R33) 9 € WHE(E x w)g} .
v

skw

Notice that the first term can be absorbed into the second one. To show this we define 9! by

a(
I(p,a') = | — ‘/I/:f 2(p) + \1’23(9) ;
13 (

3(p) = Was(p)x2

where ~ denotes the primitive of the function. A short calculation reveals that
1 ~

Sym(;vﬂﬂ’ﬁl) = sym((D1¥)pa) -
Therefore, the set of weak stochastic two-scale limits is given by

1

{szﬂl c 9t e WHA(E x w))S} .

~

Hence, we deduce

1;33( Koy (m,af + (=1,1))) = QS (0,ax1 W),

For the reverse inequality we fix o, ¥, and let 9! € (W12(Z x w))? be such that

/ELQ(p,L(Qel+pr) (D1191|— ))dxd}P’( ) < e+ Q%0,ax1W).

31



Defining
h ~
'ﬁh(xla 'CEI) = ;ﬁl(Taflw1p7 II,’/) )

we observe

1
sym(V50") 2 sym (D1’ | ;Vm/ﬁl) .
By continuity of quadratic functions w.r.t. stochastic two-scale convergence we have
e+ Qg(g, axl¥)

1
2 /H/ Q(Pa t(oer + Upy) + sym(Dyd' | ;foﬂl))dl‘/dp(p)

1 ~
= lim — / lim Q(Ta_1mp, t(per + Wpy) + sym(Vhﬁh)>dx/d]P(p) ,
z14+(—rr) hl0 J

which finishes the proof. O

Appendix

Lemma A.1. Let p > 1, Q C R? open, bounded set and (uz) C WLP(Q,R™) a bounded
sequence such that (|Vug|P) is equi-integrable. Let (si)i be an increasing sequence of positive
reals such that s, — +oo for k — +oo. Then there exists a subsequence still denoted by
(ug) and a sequence (z1,) C WL (Q,R™) satisfying: |z # ug| — 0 as k — +o00, (|V2x[P) is
equi-integrable and ||z ||yy1.00 < Csg for some C > 0 depending only on dimension d.

Proof. The proof is implicitly contained in the proof of Lemma 1.2 (decomposition lemma)
from [16], but we include it here for reasons of completeness. As in [16], the proof is divided
into two steps. In the first we assume that €2 is an extension domain, while in the second we
remove this restriction generalizing the statement for an arbitrary open set.

Step 1. Let © C R? be an extension domain, i.e. an open, bounded set for which there
exists an extension operator Tg : WP(Q,R™) — WHP(RY, R™) satisfying:

Tou=1u on ), [ Toullwie@ey < Cllullwir@) -

In the following we identify the sequence (uy) C W1P(Q,R™) with its extension sequence
(Tqui) € WHP(RY, R™). Let us introduce the Hardy-Littlewood maximal function

1
M(w)(a) = sup o /B Iy,

defined for any Borel measurable function u : R — R™. It is known that for p > 1 and
u € WHP(RY,R™),
1M (u)]|zr + [[M(Vu)|[r < Cllullys -

According to [16, Lemma 4.1] (cf. [I3]), for every k € N, there exists z, € W1 (R4 R™)
such that ux = 2z on the set S := {M(Vug)(z) < s} and ||zk|[1.0 < Csg, where C > 0
depends only on d. Using the argument as in the proof of [14, Proposition A2.], we obtain an
estimate on the Lebesgue measure of the complement of set S,

C

1Sel < —

/ (lug] + |Vug|)Pdz, for all k € N. (58)
Sk {luk|+H Vug|>s1/2}
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The strong convergence of (uy) and the equi-integrability property of (|Vug|P) imply that
S¢| = |ug, # 21| — 0 as k — co. Let A C R? be a bounded open subset, then due to the fact
that {uy = 21} = {ur = 21, Vugp = Vzi}, up to a set of the Lebesgue measure zero, we have

/ |V zi|Pde :/ |Vuk|pdx+/ |Vzg|Pdz, forall ke N.
A ANS; ANSE

Since (|Vug|P) is equi-integrable, the first term on the right-hand side can be made arbitrary
small for |A| small enough. For the second term, using (58), we estimate

/ VaPda < [V 2 |SE] < c/ (Jug| + [Vug)Pdz, for all k€N,
¢ e+ Vgl s5/2}

and conclude, as above, that limy_, fSC |Vzi[Pdz = 0. Hence, we proved that for every € > 0
k

there exists 6 > 0 and ko € N, such that for all open subsets A C R? with |A| < § and for all
k > ko it holds

/ |Vzi|Pdz < e,
A

which by definition means the equi-integrability of the sequence (|Vzy[P).
Step 2. Let Q be an arbitrary open, bounded set. For a given bounded sequence (uy) C
WLP(Q,R™), there exists a subsequence such that

up —u in WYP(QR™), w, —u in L7

(Q,R™).

Let (£2;) be an increasing sequence of compactly contained subdomains of €2 satisfying |Q\ ;| —
0 as [ — oo, and let ((;) C C°(€, [0, 1]) be a sequence of cut-off functions such that (;(z) =1
for x € €. Define 1y := uy — u, and observe that

lim sup lim sup ||yt || » = 0
l—00 k—o0

and

lim sup lim sup ||V (g )| » = limsup limsup ||V ® @y + Vi e

l—o0 k—o0 l—00 k—o0

< limsup ||Vig|/» < co.
k—oo

Then, a standard diagonalization procedure applies (cf. [2, Lemma 1.15]) and provides a
bounded sequence (Cl(k)ﬁk) C Wol’p(Q,Rm), which can be extended by zero to R%. Since,
(IV(Grytx)|P) is equi-integrable, applying the arguments of Step 1, there exists a sequence
(Zk) C WLP(Q,R™) satisfying: |2, # Gyt — 0 as k — 400, ([VZ[P) is equi-integrable
and ||2]€||W1,oo < Csy, for some C' > 0. Since, |5k: +u # uk| < |2kz % Cl(k)ﬂk‘ + |Q\Ql(k)| — 0,
(IV(Zx + u)|P) is equi-integrable, and ||Zx + ully1.« < Csi for some C' > 0, we identify
2k = 2, + u as the sought sequence. O

Remark A.2. If we assume in the previous lemma that € is a Lipschitz domain, as it is
the case in our model of the rod, where Q = (0,L) X w and w is Lipschitz, then § is also an
extension domain and according to the arguments in Step 1, we can replace the whole sequence
(ug) by its Lipschitz counterpart.
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